An open API service indexing awesome lists of open source software.

https://github.com/hariprasath-v/machinehack-dare_in_reality_hackathon

Build a machine learning model that predicts the Envision Racing drivers’ lap times.
https://github.com/hariprasath-v/machinehack-dare_in_reality_hackathon

catboostregressor data-science exploratory-data-analysis feature-engineering gradio gradio-interface klib machine-learning numpy optuna pandas python seaborn sklearn

Last synced: 8 months ago
JSON representation

Build a machine learning model that predicts the Envision Racing drivers’ lap times.

Awesome Lists containing this project

README

          

# Machinehack-dare_in_reality_hackathon

### Competition hosted on MACHINEHACK

# About

### Build a machine learning model that predicts the Envision Racing drivers’ lap times.

### Competition Public LB Rank: 97/361 & Private LB Rank: 162/352

### Evaluation Metric is RMSLE.

### File information

* dare_in_reality_hackathon_2021_model.ipynb
### Packages Used,
* Sklearn
* catboost
* Pandas
* re
* klib
* datetime
* Numpy
* Matplotlib
* gradio
* Optuna
* shap

### Basic Exploratory Data Analysis
### Created Catboost regressor model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap
### Created Demo Web-App using Gradio library
### Model RMSLE is: 0.22119371161605259

### Optuna Optimization History

![Alt text](https://github.com/hariprasath-v/Machinehack-dare_in_reality_hackathon/blob/main/Optuna%20Optimization%20Plot.png)

### Feature Importance

![Alt text](https://github.com/hariprasath-v/Machinehack-dare_in_reality_hackathon/blob/main/Feature%20Importance.png)

### Hyperparameter Importance

![Alt text](https://github.com/hariprasath-v/Machinehack-dare_in_reality_hackathon/blob/main/Hyperparameter%20Importance.png)

### Demo App Screenshot.

![Alt text](https://github.com/hariprasath-v/Machinehack-dare_in_reality_hackathon/blob/main/Model_Demo_App_%20Gradio_UI.png)