https://github.com/hariprasath-v/machinehack-dare_in_reality_hackathon
Build a machine learning model that predicts the Envision Racing drivers’ lap times.
https://github.com/hariprasath-v/machinehack-dare_in_reality_hackathon
catboostregressor data-science exploratory-data-analysis feature-engineering gradio gradio-interface klib machine-learning numpy optuna pandas python seaborn sklearn
Last synced: 8 months ago
JSON representation
Build a machine learning model that predicts the Envision Racing drivers’ lap times.
- Host: GitHub
- URL: https://github.com/hariprasath-v/machinehack-dare_in_reality_hackathon
- Owner: hariprasath-v
- License: gpl-3.0
- Created: 2021-11-29T09:23:22.000Z (almost 4 years ago)
- Default Branch: main
- Last Pushed: 2022-01-15T14:50:44.000Z (almost 4 years ago)
- Last Synced: 2025-01-13T01:44:57.097Z (9 months ago)
- Topics: catboostregressor, data-science, exploratory-data-analysis, feature-engineering, gradio, gradio-interface, klib, machine-learning, numpy, optuna, pandas, python, seaborn, sklearn
- Language: Jupyter Notebook
- Homepage:
- Size: 1.55 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Machinehack-dare_in_reality_hackathon
### Competition hosted on MACHINEHACK
# About
### Build a machine learning model that predicts the Envision Racing drivers’ lap times.
### Competition Public LB Rank: 97/361 & Private LB Rank: 162/352
### Evaluation Metric is RMSLE.
### File information
* dare_in_reality_hackathon_2021_model.ipynb
### Packages Used,
* Sklearn
* catboost
* Pandas
* re
* klib
* datetime
* Numpy
* Matplotlib
* gradio
* Optuna
* shap
### Basic Exploratory Data Analysis
### Created Catboost regressor model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap
### Created Demo Web-App using Gradio library
### Model RMSLE is: 0.22119371161605259### Optuna Optimization History

### Feature Importance

### Hyperparameter Importance

### Demo App Screenshot.
