Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hariprasath-v/machinehack-odetocode_predicting_weather_using_alien_fruit_properties
Identify the type of climate the exoplanet has based on the properties of the fruit by using machine learning.
https://github.com/hariprasath-v/machinehack-odetocode_predicting_weather_using_alien_fruit_properties
catboost machine-learning matplotlib numpy pandas seaborn shap sklearn
Last synced: about 1 month ago
JSON representation
Identify the type of climate the exoplanet has based on the properties of the fruit by using machine learning.
- Host: GitHub
- URL: https://github.com/hariprasath-v/machinehack-odetocode_predicting_weather_using_alien_fruit_properties
- Owner: hariprasath-v
- License: gpl-3.0
- Created: 2022-01-26T05:00:45.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-02-16T16:35:36.000Z (about 3 years ago)
- Last Synced: 2024-11-13T15:54:31.337Z (3 months ago)
- Topics: catboost, machine-learning, matplotlib, numpy, pandas, seaborn, shap, sklearn
- Language: Jupyter Notebook
- Homepage:
- Size: 2.17 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Machinehack-odetocode_predicting_weather_using_alien_fruit_properties
### Competition hosted on MACHINEHACK
# About
### Identify the type of climate the exoplanet has based on the properties of the fruit.
### Competition Public LB Rank:109 & Private LB Rank:19
### Final Score 0.5245
### Evaluation Metric is Accuracy.
### File information
* odetocode_predicting_weather_using_alien_fruit_properties_EDA.ipynb
### Packages Used,
* Sklearn
* seaborn
* Pandas
* klib
* Numpy
* Matplotlib
### Basic Exploratory Data Analysis
* odetocode_predicting_weather_using_alien_fruit_properties_Model.ipynb
### Packages Used,
* Sklearn
* Pandas
* Numpy
* Matplotlib
* catboost
* shap
* optuna
### Data Pre-processing
### Created Catboost classifier model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap
### Feature Importance Catboost

### Hyperparameter Importance
