Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hariprasath-v/machinehack-work_hour_prediction_challenge
MachineHack-work_hour_prediction_challenge
https://github.com/hariprasath-v/machinehack-work_hour_prediction_challenge
exploratory-data-analysis klib optuna pandas shap sklearn
Last synced: 5 days ago
JSON representation
MachineHack-work_hour_prediction_challenge
- Host: GitHub
- URL: https://github.com/hariprasath-v/machinehack-work_hour_prediction_challenge
- Owner: hariprasath-v
- Created: 2021-10-04T07:18:28.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2022-01-15T14:45:02.000Z (about 3 years ago)
- Last Synced: 2024-11-13T15:54:30.942Z (2 months ago)
- Topics: exploratory-data-analysis, klib, optuna, pandas, shap, sklearn
- Language: Jupyter Notebook
- Homepage:
- Size: 1.3 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# MachineHack-work_hour_prediction_challenge
# About
### Predicting the working hours per week at different locations. The prediction is based on various attributes such as education, marital status, and so on.
### Competition Public Leaderboard Rank - 84/166 & Private Leaderboard Rank - 22/162
### File information
* MachineHack-work_hour_prediction_challenge-EDA.ipynb
### Basic EDA
### Packages used,
* Pandas
* Numpy
* Matplotlib
* kib
* seaborn
* MachineHack-work_hour_prediction_challenge-Model.ipynb
### Data Pre-processing
### Feature Engineering
### Packages Used,
* Sklearn
* xgboost
* Pandas
* Numpy
* Matplotlib
* Optuna
* shap
### Created Xgboost regressor model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap
### Feature Importance![Alt text](https://github.com/hariprasath-v/MachineHack-work_hour_prediction_challenge/blob/main/Feature%20Importance%20plot.png)
### Hyperparameter Importance
![Alt text](https://github.com/hariprasath-v/MachineHack-work_hour_prediction_challenge/blob/main/Hyperparameter%20importance%20plot.png)