Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/hariprasath-v/machinehack-work_hour_prediction_challenge

MachineHack-work_hour_prediction_challenge
https://github.com/hariprasath-v/machinehack-work_hour_prediction_challenge

exploratory-data-analysis klib optuna pandas shap sklearn

Last synced: 5 days ago
JSON representation

MachineHack-work_hour_prediction_challenge

Awesome Lists containing this project

README

        

# MachineHack-work_hour_prediction_challenge

# About

### Predicting the working hours per week at different locations. The prediction is based on various attributes such as education, marital status, and so on.

### Competition Public Leaderboard Rank - 84/166 & Private Leaderboard Rank - 22/162

### File information
* MachineHack-work_hour_prediction_challenge-EDA.ipynb
### Basic EDA
### Packages used,
* Pandas
* Numpy
* Matplotlib
* kib
* seaborn

* MachineHack-work_hour_prediction_challenge-Model.ipynb
### Data Pre-processing
### Feature Engineering
### Packages Used,
* Sklearn
* xgboost
* Pandas
* Numpy
* Matplotlib
* Optuna
* shap

### Created Xgboost regressor model and tune the hyperparameters with the optuna framework.
### Model interpretation with shap

### Feature Importance

![Alt text](https://github.com/hariprasath-v/MachineHack-work_hour_prediction_challenge/blob/main/Feature%20Importance%20plot.png)

### Hyperparameter Importance

![Alt text](https://github.com/hariprasath-v/MachineHack-work_hour_prediction_challenge/blob/main/Hyperparameter%20importance%20plot.png)