Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/hariprasath-v/machinehack_analytics_olympiad_2023

Create a machine learning model to determine the likelihood of a customer defaulting on a loan based on credit history, payment behavior, and account details.
https://github.com/hariprasath-v/machinehack_analytics_olympiad_2023

binaryclassification catboost exploratory-data-analysis machine-learning numpy pandas python scikit-learn shap

Last synced: 6 days ago
JSON representation

Create a machine learning model to determine the likelihood of a customer defaulting on a loan based on credit history, payment behavior, and account details.

Awesome Lists containing this project

README

        

# Machinehack_analytics_olympiad_2023

### Competition hosted on Machinehack

# About

### Create a machine learning model to determine the likelihood of a customer defaulting on a loan based on credit history, payment behavior, and account details.

### The Final Competition score is 1.0

### Leaderboard Rank is 5/158

### The Evaluation Metric is roc_auc_score.

### File information

* analytics-olympiad-2023-eda.ipynb [![Open in Kaggle](https://img.shields.io/static/v1?label=&message=Open%20in%20Kaggle&labelColor=grey&color=blue&logo=kaggle)](https://www.kaggle.com/code/hari141v/analytics-olympiad-2023-eda)
#### Basic Exploratory Data Analysis
#### Packages Used,
* seaborn
* Pandas
* Numpy
* Matplotlib
* machinehack-analytics-olympiad-2022-model.ipynb [![Open in Kaggle](https://img.shields.io/static/v1?label=&message=Open%20in%20Kaggle&labelColor=grey&color=blue&logo=kaggle)](https://www.kaggle.com/code/hari141v/analytics-olympiad-2023-model)
#### Data Pre-processing and model.
#### Packages Used,
* Sklearn
* Pandas
* Numpy
* Matplotlib
* catboost
* shap
#### The Catboost model was trained separately for both targets, using default parameters.
#### The model was evaluated at each iteration using validation data.
#### The model's performance was assessed using an accuracy score.
#### [For more detailed information about the model.](https://github.com/hariprasath-v/Machinehack_analytics_olympiad_2023/blob/main/Analytics%20Olympiad%202023.pdf)

### Catboost – SHAP feature importance for primary close flag
![Alt text](https://github.com/hariprasath-v/Machinehack_analytics_olympiad_2023/blob/main/EDA_and_Model_Interpretation_Visualization/SHAP_Global_feature_importance_Primary_close_flag.png)

### Catboost – SHAP feature importance for final close flag
![Alt text](https://github.com/hariprasath-v/Machinehack_analytics_olympiad_2023/blob/main/EDA_and_Model_Interpretation_Visualization/SHAP_Global_feature_importance_Final_close_flag.png)