Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hariprasath-v/machinehack_analytics_olympiad_2023
Create a machine learning model to determine the likelihood of a customer defaulting on a loan based on credit history, payment behavior, and account details.
https://github.com/hariprasath-v/machinehack_analytics_olympiad_2023
binaryclassification catboost exploratory-data-analysis machine-learning numpy pandas python scikit-learn shap
Last synced: about 2 months ago
JSON representation
Create a machine learning model to determine the likelihood of a customer defaulting on a loan based on credit history, payment behavior, and account details.
- Host: GitHub
- URL: https://github.com/hariprasath-v/machinehack_analytics_olympiad_2023
- Owner: hariprasath-v
- License: apache-2.0
- Created: 2023-10-10T13:03:40.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2023-10-10T14:13:14.000Z (over 1 year ago)
- Last Synced: 2024-01-29T06:17:27.502Z (12 months ago)
- Topics: binaryclassification, catboost, exploratory-data-analysis, machine-learning, numpy, pandas, python, scikit-learn, shap
- Language: HTML
- Homepage:
- Size: 6.8 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Machinehack_analytics_olympiad_2023
### Competition hosted on Machinehack
# About
### Create a machine learning model to determine the likelihood of a customer defaulting on a loan based on credit history, payment behavior, and account details.
### The Final Competition score is 1.0
### Leaderboard Rank is 5/158
### The Evaluation Metric is roc_auc_score.
### File information
* analytics-olympiad-2023-eda.ipynb [![Open in Kaggle](https://img.shields.io/static/v1?label=&message=Open%20in%20Kaggle&labelColor=grey&color=blue&logo=kaggle)](https://www.kaggle.com/code/hari141v/analytics-olympiad-2023-eda)
#### Basic Exploratory Data Analysis
#### Packages Used,
* seaborn
* Pandas
* Numpy
* Matplotlib
* machinehack-analytics-olympiad-2022-model.ipynb [![Open in Kaggle](https://img.shields.io/static/v1?label=&message=Open%20in%20Kaggle&labelColor=grey&color=blue&logo=kaggle)](https://www.kaggle.com/code/hari141v/analytics-olympiad-2023-model)
#### Data Pre-processing and model.
#### Packages Used,
* Sklearn
* Pandas
* Numpy
* Matplotlib
* catboost
* shap
#### The Catboost model was trained separately for both targets, using default parameters.
#### The model was evaluated at each iteration using validation data.
#### The model's performance was assessed using an accuracy score.
#### [For more detailed information about the model.](https://github.com/hariprasath-v/Machinehack_analytics_olympiad_2023/blob/main/Analytics%20Olympiad%202023.pdf)
### Catboost – SHAP feature importance for primary close flag
![Alt text](https://github.com/hariprasath-v/Machinehack_analytics_olympiad_2023/blob/main/EDA_and_Model_Interpretation_Visualization/SHAP_Global_feature_importance_Primary_close_flag.png)### Catboost – SHAP feature importance for final close flag
![Alt text](https://github.com/hariprasath-v/Machinehack_analytics_olympiad_2023/blob/main/EDA_and_Model_Interpretation_Visualization/SHAP_Global_feature_importance_Final_close_flag.png)