Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/hariprasath-v/machinehack_intel_oneapi_hackathon_the_llm_challenge

Generate a response for the question from pre-defined text using LLM(Extracted Question-Answering(QA) Model).
https://github.com/hariprasath-v/machinehack_intel_oneapi_hackathon_the_llm_challenge

accuracy exploratory-data-analysis extractive-question-answering huggingface machine-learning matplotlib nlp nltk numpy pandas python seaborn sklearn spacy spellchecker wordcloud

Last synced: 6 days ago
JSON representation

Generate a response for the question from pre-defined text using LLM(Extracted Question-Answering(QA) Model).

Awesome Lists containing this project

README

        

# Machinehack_Intel_oneapi_hackathon_the_llm_challenge

### Competition hosted on Machinehack

# About

### Generate a response for the question from pre-defined text using LLM(Extracted Question-Answering(QA) Model).

### The Final Competition score is 0.25114

### Final Leaderboard Rank is 9/35

### The Evaluation Metric is Accuracy.

### File information

* mh-intel-oneapi-hackathon-the-llm-challenge-eda.ipynb [![Open in Kaggle](https://img.shields.io/static/v1?label=&message=Open%20in%20Kaggle&labelColor=grey&color=blue&logo=kaggle)](https://www.kaggle.com/code/hari141v/mh-intel-oneapi-hackathon-the-llm-challenge-eda)
#### Basic Exploratory Data Analysis
#### Packages Used,
* seaborn
* Pandas
* Numpy
* Matplotlib
* nltk
* spacy
* wordcloud
* spellchecker
* sklearn

* mh-intel-oneapi-hackathon-the-llm-challenge-model.ipynb [![Open in Kaggle](https://img.shields.io/static/v1?label=&message=Open%20in%20Kaggle&labelColor=grey&color=blue&logo=kaggle)](https://www.kaggle.com/code/hari141v/mh-intel-oneapi-hackathon-the-llm-challenge-model2)
#### I have directly used a pre-trained model without fine-tuning it on the training data, primarily due to my limited knowledge in NLP-QA tasks. I loaded and predicted the test data using the transformers inference pipeline.
#### Packages Used,
* Pandas
* Huggingface