Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/harritaylor/torchvggish
Pytorch port of Google Research's VGGish model used for extracting audio features.
https://github.com/harritaylor/torchvggish
audio-embedding audioset pytorch vggish
Last synced: 4 days ago
JSON representation
Pytorch port of Google Research's VGGish model used for extracting audio features.
- Host: GitHub
- URL: https://github.com/harritaylor/torchvggish
- Owner: harritaylor
- License: apache-2.0
- Created: 2019-02-04T17:13:17.000Z (almost 6 years ago)
- Default Branch: master
- Last Pushed: 2021-11-03T10:38:12.000Z (about 3 years ago)
- Last Synced: 2025-01-05T13:04:37.461Z (11 days ago)
- Topics: audio-embedding, audioset, pytorch, vggish
- Language: Python
- Homepage:
- Size: 316 KB
- Stars: 379
- Watchers: 8
- Forks: 68
- Open Issues: 13
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
**Looking for maintainers** - I no longer have the capacity to maintain this project. If you would like to take over maintenence, please get in touch. I will either forward to your fork, or add you as a maintainer for the project. Thanks.
---
# VGGish
A `torch`-compatible port of [VGGish](https://github.com/tensorflow/models/tree/master/research/audioset)[1],
a feature embedding frontend for audio classification models. The weights are ported directly from the tensorflow model, so embeddings created using `torchvggish` will be identical.## Usage
```python
import torchmodel = torch.hub.load('harritaylor/torchvggish', 'vggish')
model.eval()# Download an example audio file
import urllib
url, filename = ("http://soundbible.com/grab.php?id=1698&type=wav", "bus_chatter.wav")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)model.forward(filename)
```
[1] S. Hershey et al., ‘CNN Architectures for Large-Scale Audio Classification’,\
in International Conference on Acoustics, Speech and Signal Processing (ICASSP),2017\
Available: https://arxiv.org/abs/1609.09430, https://ai.google/research/pubs/pub45611