An open API service indexing awesome lists of open source software.

https://github.com/harry24k/mida-pytorch

PyTorch implementation of "MIDA: Multiple Imputation using Denoising Autoencoders"
https://github.com/harry24k/mida-pytorch

autoencoder deep-learning imputation pytorch

Last synced: 6 months ago
JSON representation

PyTorch implementation of "MIDA: Multiple Imputation using Denoising Autoencoders"

Awesome Lists containing this project

README

          

# MIDA-pytorch
**A pytorch implementation of "[MIDA: Multiple Imputation using Denoising Autoencoders](https://arxiv.org/abs/1705.02737)"**

## Summary
1. Doing imputation with Overcomplete AutoEncoder for missing data
2. Using complete data for training
3. Dropout is used to generate artificial missings in the training session
4. Experimenting with two missing methods(MCAR/MNAR)
5. Simple but good

## Requirements
* python==3.6
* numpy==1.14.2
* pandas==0.22.0
* scikit-learn==0.19.1
* pytorch==1.0.0

## Data
In the paper, 15 publicly available datasets used.
In this code, only 'Boston Housing' data is used among 15.
http://math.furman.edu/~dcs/courses/math47/R/library/mlbench/html/BostonHousing.html