Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/harryprince/geospark

bring sf to spark in production
https://github.com/harryprince/geospark

apache-spark gis large-scale-spatial-analysis r spark-sql sparklyr-extension spatial-analysis spatial-queries

Last synced: 11 days ago
JSON representation

bring sf to spark in production

Awesome Lists containing this project

README

        

GeoSpark: Bring sf to spark
================

![](https://image-static.segmentfault.com/101/895/1018959988-5c9809116a126)

![](https://camo.githubusercontent.com/31267b3e96ca20997396b88f7c44233710fcc637/687474703a2f2f7777772e7265706f7374617475732e6f72672f6261646765732f6c61746573742f6163746976652e737667)
[![CRAN version](https://www.r-pkg.org/badges/version/geospark)](https://CRAN.R-project.org/package=geospark)
[![Build Status](https://travis-ci.org/harryprince/geospark.svg?branch=master)](https://travis-ci.org/harryprince/geospark)
![](https://cranlogs.r-pkg.org/badges/geospark)

## Introduction & Philosophy

Goal: make traditional GISer handle geospatial big data easier.

The origin idea comes from [Uber](https://www.oreilly.com/ideas/query-the-planet-geospatial-big-data-analytics-at-uber), which proposed a ESRI Hive UDF + Presto solution to solve large-scale geospatial data processing problem with spatial index in production.

However, The Uber solution is not open source yet and Presto is not popular than Spark.

In that, `geospark` R package aims at bringing local [sf](https://github.com/r-spatial/sf) functions to distributed spark mode with [GeoSpark](https://github.com/DataSystemsLab/GeoSpark) scala package.

Currently, `geospark` support the most of important `sf` functions in spark,
here is a [summary
comparison](https://github.com/harryprince/geospark/wiki/SF-Migration-Guide). And the `geospark` R package is keeping close with geospatial and big data community, which powered by [sparklyr](https://spark.rstudio.com), [sf](https://github.com/r-spatial/sf), [dplyr](https://db.rstudio.com/dplyr/) and [dbplyr](https://github.com/tidyverse/dbplyr).

## Installation

This package requires Apache Spark 3.X which you can install using
`sparklyr::install_spark("3.0")`, and previous spark version like spark2.X is no longer officially maintain. in addition, you can install
`geospark` as follows:

``` r
pak::pkg_install("harryprince/geospark")
```

## Getting Started

In this example we will join spatial data using quadrad tree indexing.
First, we will initialize the `geospark` extension and connect to Spark
using `sparklyr`:

``` r
library(sparklyr)
library(geospark)

sc <- spark_connect(master = "local")
register_gis(sc)
```

Next we will load some spatial dataset containing as polygons and
points.

``` r
polygons <- read.table(system.file(package="geospark","examples/polygons.txt"), sep="|", col.names=c("area","geom"))
points <- read.table(system.file(package="geospark","examples/points.txt"), sep="|", col.names=c("city","state","geom"))

polygons_wkt <- copy_to(sc, polygons)
points_wkt <- copy_to(sc, points)
```

And we can quickly visulize the dataset by `mapview` and `sf`.

```
M1 = polygons %>%
sf::st_as_sf(wkt="geom") %>% mapview::mapview()

M2 = points %>%
sf::st_as_sf(wkt="geom") %>% mapview::mapview()

M1+M2
```

![](https://segmentfault.com/img/bVbqmP9/view?w=1198&h=766)

### The SQL Mode

Now we can perform a GeoSpatial join using the `st_contains` which
converts `wkt` into geometry object. To get the original data from `wkt`
format, we will use the `st_geomfromwkt` functions. We can execute this
spatial query using `DBI`:

``` r
DBI::dbGetQuery(sc, "
SELECT area, state, count(*) cnt FROM
(SELECT area, ST_GeomFromWKT(polygons.geom) as y FROM polygons) polygons
INNER JOIN
(SELECT ST_GeomFromWKT (points.geom) as x, state, city FROM points) points
WHERE ST_Contains(polygons.y,points.x) GROUP BY area, state")
```

```
area state cnt
1 texas area TX 10
2 dakota area SD 1
3 dakota area ND 10
4 california area CA 10
5 new york area NY 9
```

### The Tidyverse Mode

You can also perform this query using `dplyr` as follows:

``` r
library(dplyr)
polygons_wkt <- mutate(polygons_wkt, y = st_geomfromwkt(geom))
points_wkt <- mutate(points_wkt, x = st_geomfromwkt(geom))

sc_res <- inner_join(polygons_wkt,
points_wkt,
sql_on = sql("st_contains(y,x)")) %>%
group_by(area, state) %>%
summarise(cnt = n())

sc_res %>%
head()
```

```
# Source: spark> [?? x 3]
# Groups: area
area state cnt

1 texas area TX 10
2 dakota area SD 1
3 dakota area ND 10
4 california area CA 10
5 new york area NY 9
```

The final result can be present by `leaflet`.

```
Idx_df = collect(sc_res) %>%
right_join(polygons,by = (c("area"="area"))) %>%
sf::st_as_sf(wkt="geom")

Idx_df %>%
leaflet::leaflet() %>%
leaflet::addTiles() %>%
leaflet::addPolygons(popup = ~as.character(cnt),color=~colormap::colormap_pal()(cnt))

```

![](https://image-static.segmentfault.com/305/306/3053068814-5c9803c8d59a7)

Finally, we can disconnect:

``` r
spark_disconnect_all()
```

## Performance

### Configuration

To improve performance, it is recommended to use the `KryoSerializer`
and the `GeoSparkKryoRegistrator` before connecting as follows:

``` r
conf <- spark_config()
conf$spark.serializer <- "org.apache.spark.serializer.KryoSerializer"
conf$spark.kryo.registrator <- "org.datasyslab.geospark.serde.GeoSparkKryoRegistrator"
```

### Benchmarks

This performance comparison is an extract from the original [GeoSpark: A
Cluster Computing Framework for Processing Spatial
Data](https://pdfs.semanticscholar.org/347d/992ceec645a28f4e7e45e9ab902cd75ecd92.pdf)
paper:

| No. | test case | the number of records |
| --- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------- |
| 1 | SELECT IDCODE FROM zhenlongxiang WHERE ST\_Disjoint(geom,ST\_GeomFromText(‘POLYGON((517000 1520000,619000 1520000,619000 2530000,517000 2530000,517000 1520000))’)); | 85,236 rows |
| 2 | SELECT fid FROM cyclonepoint WHERE ST\_Disjoint(geom,ST\_GeomFromText(‘POLYGON((90 3,170 3,170 55,90 55,90 3))’,4326)) | 60,591 rows |

Query
performance(ms),

| No. | PostGIS/PostgreSQL | GeoSpark SQL | ESRI Spatial Framework for Hadoop |
| --- | ------------------ | ------------ | --------------------------------- |
| 1 | 9631 | 480 | 40,784 |
| 2 | 110872 | 394 | 64,217 |

According to this paper, the Geospark SQL definitely outperforms PG and
ESRI UDF under a very large data set.

If you are wondering how the spatial index accelerate the query process,
here is a good Uber example: [Unwinding Uber’s Most Efficient
Service](https://medium.com/@buckhx/unwinding-uber-s-most-efficient-service-406413c5871d#.dg5v6irao)
and the [Chinese translation
version](https://segmentfault.com/a/1190000008657566)

## Functions

### Constructor

name|desc
---|---
`ST_GeomFromWKT`| Construct a Geometry from Wkt.
`ST_GeomFromWKB`| Construct a Geometry from Wkb.
`ST_GeomFromGeoJSON`| Construct a Geometry from GeoJSON.
`ST_Point`| Construct a Point from X and Y.
`ST_PointFromText`| Construct a Point from Text, delimited by Delimiter.
`ST_PolygonFromText`| Construct a Polygon from Text, delimited by Delimiter.
`ST_LineStringFromText`| Construct a LineString from Text, delimited by Delimiter.
`ST_PolygonFromEnvelope`| Construct a Polygon from MinX, MinY, MaxX, MaxY.

### Geometry Measurement

name|desc
---|---
`ST_Length`| Return the perimeter of A
`ST_Area`| Return the area of A
`ST_Distance`| Return the Euclidean distance between A and B

### Spatial Join

![](https://camo.githubusercontent.com/f18513c8002df02bdb6e3aac451519beb3c87ebb/68747470733a2f2f7365676d656e746661756c742e636f6d2f696d672f625662714665333f773d3132383026683d353038)

name|desc
---|---
`ST_Contains`|
`ST_Intersects`|
`ST_Within`|
`ST_Equals`|
`ST_Crosses`|
`ST_Touches`|
`ST_Overlaps`|

### Distance join

`ST_Distance`:

Spark GIS SQL mode example:

```
SELECT *
FROM pointdf1, pointdf2
WHERE ST_Distance(pointdf1.pointshape1,pointdf2.pointshape2) <= 2
```

Tidyverse style example:

```
st_join(x = pointdf1,
y = pointdf2,
join = sql("ST_Distance(pointshape1, pointshape2) <= 2"))
```

### Aggregation

name|desc
---|---
`ST_Envelope_Aggr`| Return the entire envelope boundary of all geometries in A
`ST_Union_Aggr`|Return the polygon union of all polygons in A

### More Advacned Functions

name|desc
---|---
`ST_ConvexHull`| Return the Convex Hull of polgyon A
`ST_Envelope`| Return the envelop boundary of A
`ST_Centroid`| Return the centroid point of A
`ST_Transform`| Transform the Spatial Reference System / Coordinate Reference System of A, from SourceCRS to TargetCRS
`ST_IsValid`| Test if a geometry is well formed
`ST_PrecisionReduce`| Reduce the decimals places in the coordinates of the geometry to the given number of decimal places. The last decimal place will be rounded.
`ST_IsSimple`| Test if geometry's only self-intersections are at boundary points.
`ST_Buffer`| Returns a geometry/geography that represents all points whose distance from this Geometry/geography is less than or equal to distance.
`ST_AsText`| Return the Well-Known Text string representation of a geometry

## Architecture

# ![](https://user-images.githubusercontent.com/5362577/53225664-bf6abc80-36b3-11e9-8b8e-41611fc7098e.png)