Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/has2k1/plotnine
A Grammar of Graphics for Python
https://github.com/has2k1/plotnine
data-analysis grammar graphics plotting python
Last synced: 5 days ago
JSON representation
A Grammar of Graphics for Python
- Host: GitHub
- URL: https://github.com/has2k1/plotnine
- Owner: has2k1
- License: mit
- Created: 2017-04-24T19:00:44.000Z (over 7 years ago)
- Default Branch: main
- Last Pushed: 2024-10-29T11:10:01.000Z (2 months ago)
- Last Synced: 2024-10-29T11:12:06.135Z (2 months ago)
- Topics: data-analysis, grammar, graphics, plotting, python
- Language: Python
- Homepage: https://plotnine.org
- Size: 142 MB
- Stars: 4,015
- Watchers: 64
- Forks: 217
- Open Issues: 81
-
Metadata Files:
- Readme: README.md
- License: LICENSE
- Code of conduct: code-of-conduct.md
- Citation: CITATION.bib
Awesome Lists containing this project
- my-awesome-github-stars - has2k1/plotnine - A Grammar of Graphics for Python (Python)
- awesome-python-machine-learning-resources - GitHub - 13% open · ⏱️ 01.07.2022): (数据可视化)
- awesome-python-resources - GitHub - 13% open · ⏱️ 01.07.2022): (数据可视化)
- awesome-python-machine-learning - plotnine - plotnine is an implementation of a grammar of graphics in Python, it is based on ggplot2. (Uncategorized / Uncategorized)
- awesome-list - plotnine - An implementation of the Grammar of Graphics in Python, based on ggplot2. (Data Visualization / Data Management)
- StarryDivineSky - has2k1/plotnine
- awesome-python-data-visualization - plotnine - A grammar of graphics for Python based on ggplot2. (Other InfoVis)
README
# plotnine
[![Release](https://img.shields.io/pypi/v/plotnine.svg)](https://pypi.python.org/pypi/plotnine)
[![License](https://img.shields.io/pypi/l/plotnine.svg)](https://pypi.python.org/pypi/plotnine)
[![DOI](https://zenodo.org/badge/89276692.svg)](https://zenodo.org/badge/latestdoi/89276692)
[![Build Status](https://github.com/has2k1/plotnine/workflows/build/badge.svg?branch=main)](https://github.com/has2k1/plotnine/actions?query=branch%3Amain+workflow%3A%22build%22)
[![Coverage](https://codecov.io/github/has2k1/plotnine/coverage.svg?branch=main)](https://codecov.io/github/has2k1/plotnine?branch=main)plotnine is an implementation of a *grammar of graphics* in Python
based on [ggplot2](https://github.com/tidyverse/ggplot2).
The grammar allows you to compose plots by explicitly mapping variables in a
dataframe to the visual characteristics (position, color, size etc.) of objects that make up the plot.Plotting with a *grammar of graphics* is powerful. Custom (and otherwise
complex) plots are easy to think about and build incrementally, while the
simple plots remain simple to create.To learn more about how to use plotnine, check out the
[documentation](https://plotnine.org). Since plotnine
has an API similar to ggplot2, where it lacks in coverage the
[ggplot2 documentation](http://ggplot2.tidyverse.org/reference/index.html)
may be helpful.## Example
```python
from plotnine import *
from plotnine.data import mtcars
```Building a complex plot piece by piece.
1. Scatter plot
```python
(
ggplot(mtcars, aes("wt", "mpg"))
+ geom_point()
)
```
2. Scatter plot colored according some variable
```python
(
ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
+ geom_point()
)
```
3. Scatter plot colored according some variable and
smoothed with a linear model with confidence intervals.```python
(
ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
+ geom_point()
+ stat_smooth(method="lm")
)
```
4. Scatter plot colored according some variable,
smoothed with a linear model with confidence intervals and
plotted on separate panels.```python
(
ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
+ geom_point()
+ stat_smooth(method="lm")
+ facet_wrap("gear")
)
```
5. Adjust the themes
I) Make it playful
```python
(
ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
+ geom_point()
+ stat_smooth(method="lm")
+ facet_wrap("gear")
+ theme_xkcd()
)
```
II) Or professional
```python
(
ggplot(mtcars, aes("wt", "mpg", color="factor(gear)"))
+ geom_point()
+ stat_smooth(method="lm")
+ facet_wrap("gear")
+ theme_tufte()
)
```
## Installation
Official release
```console
# Using pip
$ pip install plotnine # 1. should be sufficient for most
$ pip install 'plotnine[extra]' # 2. includes extra/optional packages
$ pip install 'plotnine[test]' # 3. testing
$ pip install 'plotnine[doc]' # 4. generating docs
$ pip install 'plotnine[dev]' # 5. development (making releases)
$ pip install 'plotnine[all]' # 6. everything# Or using conda
$ conda install -c conda-forge plotnine
```Development version
```console
$ pip install git+https://github.com/has2k1/plotnine.git
```## Contributing
Our documentation could use some examples, but we are looking for something
a little bit special. We have two criteria:1. Simple looking plots that otherwise require a trick or two.
2. Plots that are part of a data analytic narrative. That is, they provide
some form of clarity showing off the `geom`, `stat`, ... at their
differential best.If you come up with something that meets those criteria, we would love to
see it. See [plotnine-examples](https://github.com/has2k1/plotnine-examples).If you discover a bug checkout the [issues](https://github.com/has2k1/plotnine/issues)
if it has not been reported, yet please file an issue.And if you can fix a bug, your contribution is welcome.
Testing
-------Plotnine has tests that generate images which are compared to baseline images known
to be correct. To generate images that are consistent across all systems you have
to install matplotlib from source. You can do that with ``pip`` using the command.```console
$ pip install matplotlib --no-binary matplotlib
```Otherwise there may be small differences in the text rendering that throw off the
image comparisons.