Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hasibzunair/uniformizing-3d
[MICCAI'2020 PRIME] Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Severity Estimation.
https://github.com/hasibzunair/uniformizing-3d
3d-data classification computed-tomography convolutional-neural-networks deep-learning information-retrieval volumetric-data
Last synced: about 2 months ago
JSON representation
[MICCAI'2020 PRIME] Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Severity Estimation.
- Host: GitHub
- URL: https://github.com/hasibzunair/uniformizing-3d
- Owner: hasibzunair
- Created: 2019-08-04T00:16:29.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2022-08-11T16:40:59.000Z (over 2 years ago)
- Last Synced: 2023-04-13T07:20:44.372Z (over 1 year ago)
- Topics: 3d-data, classification, computed-tomography, convolutional-neural-networks, deep-learning, information-retrieval, volumetric-data
- Language: Jupyter Notebook
- Homepage:
- Size: 23.6 MB
- Stars: 43
- Watchers: 4
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# Intro
This is official code of MICCAI'2020 PRIME workshop paper:
*Uniformizing Techniques to Process CT scans with 3D CNNs for Tuberculosis Prediction* ([Paper](https://link.springer.com/chapter/10.1007%2F978-3-030-59354-4_15), [arXiv](https://arxiv.org/abs/2007.13224))### Virtual Presentation at MICCAI'2020 PRIME
[![IMAGE ALT TEXT HERE](https://img.youtube.com/vi/IP6poudyny4/0.jpg)](https://www.youtube.com/watch?v=IP6poudyny4)### Citation
If you use this code or models in your scientific work, please cite the following paper:```bibtex
@inproceedings{zunair2020uniformizing,
title={Uniformizing Techniques to Process CT Scans with 3D CNNs for Tuberculosis Prediction},
author={Zunair, Hasib and Rahman, Aimon and Mohammed, Nabeel and Cohen, Joseph Paul},
booktitle={International Workshop on PRedictive Intelligence In MEdicine},
pages={156--168},
year={2020},
organization={Springer}
}
```### Data Processing Method
Data uniformizing methods
### 3D Convolutional Neural Network
### Results
### Dependencies
* Ubuntu 14.04
* Python 3.6
* Tensorflow: 2.0.0
* Keras: 2.3.1### Environment setup
You can create the appropriate conda environment by running
`conda env create -f environment.yml`
### Directory Structure & Usage
First, get the data from [here](https://www.imageclef.org/2019/medical/tuberculosis). Then:
* Run notebooks in order
* `others`: Contains helper codes to preprocess and visualize samples in dataset.### Demo
A 🤗 Spaces demo for detecting pneumonia from CT scans using our [method](https://keras.io/examples/vision/3D_image_classification/) is available [here](https://huggingface.co/spaces/keras-io/3D_CNN_Pneumonia). Demo built by [Faizan Shaikh](https://github.com/faizankshaikh).
### This is an extension of previous work
More details at this [link](https://github.com/hasibzunair/tuberculosis-severity)
```bibtex
Zunair, H., Rahman, A., Mohammed, N.: Estimating Severity from CT Scans
of Tuberculosis Patients using 3D Convolutional Nets and Slice Selection. In:
CLEF2019 Working Notes. Volume 2380 of CEUR Workshop Proceedings.,
Lugano, Switzerland, CEUR-WS.org
(September 9-12 2019)
```
Previous paper published in CEUR-WS. Paper can be found at [CLEF Working Notes 2019](http://www.dei.unipd.it/~ferro/CLEF-WN-Drafts/CLEF2019/paper_77.pdf) under the section ImageCLEF - Multimedia Retrieval in CLEF.### License
Your driver's license.