Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hayatiyrtgl/cell_classification_cnn
This code trains a CNN in Keras to classify cell images (infected/uninfected). It sets up data generators, defines model architecture with convolutional layers, applies regularization, configures callbacks, and trains the model for binary classification.
https://github.com/hayatiyrtgl/cell_classification_cnn
cnn cnn-architecture cnn-classification cnn-for-visual-recognition cnn-keras cnn-model convolutional convolutional-layers convolutional-neural-network convolutional-neural-networks python python-classifiers python3
Last synced: 12 days ago
JSON representation
This code trains a CNN in Keras to classify cell images (infected/uninfected). It sets up data generators, defines model architecture with convolutional layers, applies regularization, configures callbacks, and trains the model for binary classification.
- Host: GitHub
- URL: https://github.com/hayatiyrtgl/cell_classification_cnn
- Owner: HayatiYrtgl
- License: mit
- Created: 2024-04-18T17:21:05.000Z (9 months ago)
- Default Branch: main
- Last Pushed: 2024-04-18T17:21:49.000Z (9 months ago)
- Last Synced: 2024-11-05T09:15:45.162Z (about 2 months ago)
- Topics: cnn, cnn-architecture, cnn-classification, cnn-for-visual-recognition, cnn-keras, cnn-model, convolutional, convolutional-layers, convolutional-neural-network, convolutional-neural-networks, python, python-classifiers, python3
- Language: Python
- Homepage:
- Size: 38.1 KB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
Explanation of the code line by line:
1. `from keras.layers import *`: Imports all layers from the Keras library. This allows you to use any layer without specifying the module.
2. `from keras.models import Sequential`: Imports the Sequential model from Keras. Sequential is a linear stack of layers.
3. `from keras.utils import to_categorical`: Imports a utility function to convert class vector (integers) to binary class matrix.
4. `import numpy as np`: Imports the numpy library with the alias np.
5. `from keras.regularizers import l1`: Imports L1 regularization.
6. `from keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard`: Imports various callbacks used during training.
7. `from keras.preprocessing.image import ImageDataGenerator`: Imports the ImageDataGenerator class from Keras for real-time data augmentation.
8. `train_path = "../DATASET/cell_images/train"`: Specifies the path to the training data directory.
9. `test_path = "../DATASET/cell_images/test"`: Specifies the path to the test data directory.
10. `train_generator = ImageDataGenerator(...)`: Creates an ImageDataGenerator object for training data augmentation.
11. `test_generator = ImageDataGenerator(...)`: Creates an ImageDataGenerator object for test data preprocessing.
12. `train_set = train_generator.flow_from_directory(...)`: Generates batches of augmented data for training from the specified directory.
13. `test_set = test_generator.flow_from_directory(...)`: Generates batches of augmented data for testing from the specified directory.
14. `early_stopping = EarlyStopping(...)`: Defines the early stopping criteria for training.
15. `tensorboard = TensorBoard(...)`: Configures TensorBoard for visualization during training.
16. `model_checkpoint = ModelCheckpoint(...)`: Configures model checkpointing to save the best model during training.
17. `callbacks_list = [early_stopping, tensorboard, model_checkpoint]`: Creates a list of callbacks to be used during training.
18. `model = Sequential()`: Creates a Sequential model.
19. `model.add(Conv2D(...))`: Adds a convolutional layer to the model with specified parameters.
20. `model.add(MaxPooling2D(...))`: Adds a max pooling layer to the model.
21. `model.add(BatchNormalization())`: Adds a batch normalization layer to the model.
22. `model.add(Flatten())`: Flattens the input to a one-dimensional array.
23. `model.add(Dense(...))`: Adds a fully connected dense layer to the model.
24. `model.summary()`: Prints a summary of the model architecture.
25. `model.compile(...)`: Compiles the model with specified loss function, optimizer, and metrics.
26. `model.fit(...)`: Trains the model using the training data generator, with specified parameters such as number of epochs, batch size, validation split, and callbacks.
That's a comprehensive overview of what each line of the code does. Let me know if you need further clarification on any specific part!