Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hazdzz/stgcn
The PyTorch implementation of STGCN.
https://github.com/hazdzz/stgcn
gcn gnn pytorch road-traffic-prediction tcn
Last synced: 3 days ago
JSON representation
The PyTorch implementation of STGCN.
- Host: GitHub
- URL: https://github.com/hazdzz/stgcn
- Owner: hazdzz
- License: lgpl-2.1
- Created: 2020-11-16T20:36:50.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2024-12-07T06:27:09.000Z (about 1 month ago)
- Last Synced: 2025-01-08T14:21:55.629Z (10 days ago)
- Topics: gcn, gnn, pytorch, road-traffic-prediction, tcn
- Language: Python
- Homepage:
- Size: 126 MB
- Stars: 513
- Watchers: 6
- Forks: 111
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Spatio-Temporal Graph Convolutional Networks
[![issues](https://img.shields.io/github/issues/hazdzz/STGCN)](https://github.com/hazdzz/STGCN/issues)
[![forks](https://img.shields.io/github/forks/hazdzz/STGCN)](https://github.com/hazdzz/STGCN/network/members)
[![stars](https://img.shields.io/github/stars/hazdzz/STGCN)](https://github.com/hazdzz/STGCN/stargazers)
[![License](https://img.shields.io/github/license/hazdzz/STGCN)](./LICENSE)## About
The PyTorch implementation of STGCN from the paper *Spatio-Temporal Graph Convolutional Networks:
A Deep Learning Framework for Traffic Forecasting*.## Paper
https://arxiv.org/abs/1709.04875## Citation
```
@inproceedings{10.5555/3304222.3304273,
author = {Yu, Bing and Yin, Haoteng and Zhu, Zhanxing},
title = {Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting},
year = {2018},
isbn = {9780999241127},
publisher = {AAAI Press},
booktitle = {Proceedings of the 27th International Joint Conference on Artificial Intelligence},
pages = {3634–3640},
numpages = {7},
series = {IJCAI'18}
}
```## Related works
1. TCN: [*An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling*](https://arxiv.org/abs/1803.01271)
2. GLU and GTU: [*Language Modeling with Gated Convolutional Networks*](https://arxiv.org/abs/1612.08083)
3. ChebNet: [*Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering*](https://arxiv.org/abs/1606.09375)
4. GCN: [*Semi-Supervised Classification with Graph Convolutional Networks*](https://arxiv.org/abs/1609.02907)## Related code
1. TCN: https://github.com/locuslab/TCN
2. ChebNet: https://github.com/mdeff/cnn_graph
3. GCN: https://github.com/tkipf/pygcn## Dataset
### Source
1. METR-LA: [DCRNN author's Google Drive](https://drive.google.com/file/d/1pAGRfzMx6K9WWsfDcD1NMbIif0T0saFC/view?usp=sharing)
2. PEMS-BAY: [DCRNN author's Google Drive](https://drive.google.com/file/d/1wD-mHlqAb2mtHOe_68fZvDh1LpDegMMq/view?usp=sharing)
3. PeMSD7(M): [STGCN author's GitHub repository](https://github.com/VeritasYin/STGCN_IJCAI-18/blob/master/data_loader/PeMS-M.zip)### Preprocessing
Using the formula from [ChebNet](https://arxiv.org/abs/1606.09375):## Model structure
## Differents of code between mine and author's
1. Fix bugs
2. Add Early Stopping approach
3. Add Dropout approach
4. Offer a different set of hyperparameters
5. Offer config files for two different categories graph convolution (ChebyGraphConv and GraphConv)
6. Add datasets METR-LA and PEMS-BAY
7. Adopt a different data preprocessing method## Requirements
To install requirements:
```console
pip3 install -r requirements.txt
```