Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hbaniecki/robust-feature-effects
Robustness of Global Feature Effect Explanations (ECML PKDD 2024)
https://github.com/hbaniecki/robust-feature-effects
accumulated-local-effects dalex explainable-ai explainable-machine-learning explanatory-model-analysis feature-attribution iml interpretable-machine-learning partial-dependence-plot
Last synced: 19 days ago
JSON representation
Robustness of Global Feature Effect Explanations (ECML PKDD 2024)
- Host: GitHub
- URL: https://github.com/hbaniecki/robust-feature-effects
- Owner: hbaniecki
- License: mit
- Created: 2024-06-08T08:52:55.000Z (7 months ago)
- Default Branch: main
- Last Pushed: 2024-08-26T16:23:32.000Z (4 months ago)
- Last Synced: 2024-10-16T03:45:48.822Z (2 months ago)
- Topics: accumulated-local-effects, dalex, explainable-ai, explainable-machine-learning, explanatory-model-analysis, feature-attribution, iml, interpretable-machine-learning, partial-dependence-plot
- Language: Jupyter Notebook
- Homepage: https://arxiv.org/abs/2406.09069
- Size: 1.15 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# On the Robustness of Global Feature Effect Explanations
This repository is a supplement to [the following paper](https://arxiv.org/abs/2406.09069):
> Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek. *On the Robustness of Global Feature Effect Explanations*. **ECML PKDD 2024** https://arxiv.org/abs/2406.09069
```bibtex
@inproceedings{baniecki2024robustness,
title = {On the Robustness of Global Feature Effect Explanations},
author = {Hubert Baniecki and
Giuseppe Casalicchio and
Bernd Bischl and
Przemyslaw Biecek},
booktitle = {ECML PKDD},
year = {2024}
}
```### Install the environment
1. `mamba env create -f env.yml`
2. install [OpenXAI](https://github.com/AI4LIFE-GROUP/OpenXAI):
- download `https://github.com/AI4LIFE-GROUP/OpenXAI`
- remove version of `torch`
- `mamba activate robustfe`
- `pip install .`### Run the experiments
- `experiment1.ipynb` uses the algorithm [(Baniecki et al., 2022)](https://doi.org/10.1007/978-3-031-26409-2_8) implemented in `src` to perform experiments reported in Section 5.1
- `experiment2.ipynb`, `experiment2_plot.ipynb` perform experiments reported in Section 5.2
- `results` directory contains metadata of results from running `experiment1.ipynb` and `experiment2.ipynb`### Check out also
Adebayo et al. **[Sanity Checks for Saliency Maps](https://doi.org/10.48550/arXiv.1810.03292)**. NeurIPS 2018
Baniecki et al. **[Fooling Partial Dependence via Data Poisoning](https://doi.org/10.1007/978-3-031-26409-2_8)**. ECML PKDD 2022
Gkolemis et al. **[RHALE: Robust and Heterogeneity-aware Accumulated Local Effects](https://doi.org/10.48550/arXiv.2309.11193)**. ECAI 2023
Lin et al. **[On the Robustness of Removal-Based Feature Attributions](https://doi.org/10.48550/arXiv.2306.07462)**. NeurIPS 2023