Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/hbaniecki/robust-feature-effects

Robustness of Global Feature Effect Explanations (ECML PKDD 2024)
https://github.com/hbaniecki/robust-feature-effects

accumulated-local-effects dalex explainable-ai explainable-machine-learning explanatory-model-analysis feature-attribution iml interpretable-machine-learning partial-dependence-plot

Last synced: 19 days ago
JSON representation

Robustness of Global Feature Effect Explanations (ECML PKDD 2024)

Awesome Lists containing this project

README

        

# On the Robustness of Global Feature Effect Explanations

This repository is a supplement to [the following paper](https://arxiv.org/abs/2406.09069):

> Hubert Baniecki, Giuseppe Casalicchio, Bernd Bischl, Przemyslaw Biecek. *On the Robustness of Global Feature Effect Explanations*. **ECML PKDD 2024** https://arxiv.org/abs/2406.09069

```bibtex
@inproceedings{baniecki2024robustness,
title = {On the Robustness of Global Feature Effect Explanations},
author = {Hubert Baniecki and
Giuseppe Casalicchio and
Bernd Bischl and
Przemyslaw Biecek},
booktitle = {ECML PKDD},
year = {2024}
}
```

### Install the environment

1. `mamba env create -f env.yml`
2. install [OpenXAI](https://github.com/AI4LIFE-GROUP/OpenXAI):
- download `https://github.com/AI4LIFE-GROUP/OpenXAI`
- remove version of `torch`
- `mamba activate robustfe`
- `pip install .`

### Run the experiments

- `experiment1.ipynb` uses the algorithm [(Baniecki et al., 2022)](https://doi.org/10.1007/978-3-031-26409-2_8) implemented in `src` to perform experiments reported in Section 5.1
- `experiment2.ipynb`, `experiment2_plot.ipynb` perform experiments reported in Section 5.2
- `results` directory contains metadata of results from running `experiment1.ipynb` and `experiment2.ipynb`

### Check out also

Adebayo et al. **[Sanity Checks for Saliency Maps](https://doi.org/10.48550/arXiv.1810.03292)**. NeurIPS 2018

Baniecki et al. **[Fooling Partial Dependence via Data Poisoning](https://doi.org/10.1007/978-3-031-26409-2_8)**. ECML PKDD 2022

Gkolemis et al. **[RHALE: Robust and Heterogeneity-aware Accumulated Local Effects](https://doi.org/10.48550/arXiv.2309.11193)**. ECAI 2023

Lin et al. **[On the Robustness of Removal-Based Feature Attributions](https://doi.org/10.48550/arXiv.2306.07462)**. NeurIPS 2023