Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/headless-start/yolov4-tiny-raspberrypi
This repository contains YOLOv4-Tiny deployment on Raspberry pi.
https://github.com/headless-start/yolov4-tiny-raspberrypi
darknet edge numpy object-detection opencv powerpoint python-3 pytorch raspberry-pi tensorflowlite yolov4 yolov4-darknet yolov4-tiny
Last synced: 1 day ago
JSON representation
This repository contains YOLOv4-Tiny deployment on Raspberry pi.
- Host: GitHub
- URL: https://github.com/headless-start/yolov4-tiny-raspberrypi
- Owner: headless-start
- License: mit
- Created: 2025-01-10T14:41:31.000Z (about 1 month ago)
- Default Branch: main
- Last Pushed: 2025-02-01T08:30:32.000Z (9 days ago)
- Last Synced: 2025-02-08T16:17:41.734Z (1 day ago)
- Topics: darknet, edge, numpy, object-detection, opencv, powerpoint, python-3, pytorch, raspberry-pi, tensorflowlite, yolov4, yolov4-darknet, yolov4-tiny
- Homepage:
- Size: 3.75 MB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# Real-Time Object Detection on Edge Devices with YOLOv4-Tiny
## 📌 Project Overview
This project analyzes the suitability of **YOLOv4-Tiny** for real-time object detection on **edge devices** like the Raspberry Pi. The lightweight architecture of YOLOv4-Tiny enables high-speed inference, making it ideal for resource-constrained hardware. This work is presented in the form of a **college task**, focusing on the architectural advantages and performance optimizations of YOLOv4-Tiny over vanilla YOLOv4.---
## 🚀 Key Features
1. **Lightweight Architecture**:
- YOLOv4-Tiny uses fewer layers and smaller backbones, making it faster and more efficient for edge deployment.
2. **Real-Time Performance**:
- Optimized for speed and efficiency while maintaining acceptable accuracy for real-world applications.
3. **Edge Device Optimization**:
- Tested on devices like Raspberry Pi 4B for optimal detection.---
## 🛠Architecture and Performance Enhancements
### YOLOv4-Tiny Architecture
1. **Backbone**:
- CSPDarknet53-Tiny for efficient feature extraction.
2. **Neck**:
- Feature Pyramid Network (FPN) for feature pooling.
3. **Head**:
- Dual-scale detection for large and small objects using 13×13 and 26×26 grids.### Performance Enhancements
1. **Fewer Parameters**:
- ~6 million compared to ~63.6 million in YOLOv4.
3. **Simpler Activation**:
- Uses LeakyReLU instead of Mish activation for faster computation.
5. **Quantization and Pruning**:
- Reduces model size and increases speed for edge deployment.
7. **TPU Acceleration**:
- Compatible with hardware like Google Coral for faster inference.---
## 🛠Usage
### Dependencies
- **Python**: 3.8+
- **Libraries**: `tensorflow-lite` ,`darknet` , `numpy`, `opencv-python`
- **Hardware**: Raspberry Pi 4B---
## 📄 License
This project is licensed under the MIT License. See the [LICENSE](LICENSE) file for details.