Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hellloxiaotian/lesrcnn
Lightweight Image Super-Resolution with Enhanced CNN (Knowledge-Based Systems,2020)
https://github.com/hellloxiaotian/lesrcnn
cnn cnn-pytorch deep-learning enhancement-and-compression image-processing image-super-resolution information-refinement lightweight-enhanced-network low-level-vision python27
Last synced: about 18 hours ago
JSON representation
Lightweight Image Super-Resolution with Enhanced CNN (Knowledge-Based Systems,2020)
- Host: GitHub
- URL: https://github.com/hellloxiaotian/lesrcnn
- Owner: hellloxiaotian
- Created: 2020-05-27T15:55:10.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-10-12T02:11:12.000Z (over 2 years ago)
- Last Synced: 2025-01-10T09:09:02.993Z (11 days ago)
- Topics: cnn, cnn-pytorch, deep-learning, enhancement-and-compression, image-processing, image-super-resolution, information-refinement, lightweight-enhanced-network, low-level-vision, python27
- Language: Python
- Homepage: https://www.sciencedirect.com/science/article/abs/pii/S0950705120304391
- Size: 15.7 MB
- Stars: 220
- Watchers: 2
- Forks: 32
- Open Issues: 11
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# LESRCNN
## Lightweight Image Super-Resolution with Enhanced CNN(LESRCNN)is conducted by Chunwei Tian, Ruibin Zhuge, Zhihao Wu, Yong Xu, Wangmeng Zuo, Chen Chen and Chia-Wen Lin, and accepted by Knowledge-Based Systems (IF:8.139) in 2020. It is implemented by Pytorch. And it is reported by Cver and 52CV. Its website is https://mp.weixin.qq.com/s/njlAEQXxjXKqFcxM7KYiqA. Its codes has been converted as CoreML format (for IOS) by the Japan engineer, where its link is https://github.com/john-rocky/CoreML-Models/blob/master/README.md#lesrcnn.## This paper uses a flexible sub-pixel convolutional technique for image blind super-resolution, which is useful for phones and cameras. Also, it has less parameters and faster super-resolution speed.
https://user-images.githubusercontent.com/25679314/195232308-d6883b2c-d3e0-4c03-9f64-3969e67e3a98.mp4
### Abstract
#### Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR). However, their excessive amounts ofconvolutions and parameters usually consume high computational cost and more memory storagefor training a SR model, which limits their applications to SR with resource-constrained devicesin real world. To resolve these problems, we propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB). Specifically, the IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR. To remove redundant information obtained, a heterogeneous architecture is adopted in the IEEB. After that, the RB converts low-frequency features into high-frequency features by fusing global and local features, which is complementary with the IEEB in tackling the long-term dependency problem. Finally,the IRB uses coarse high-frequency features from the RB to learn more accurate SR features and construct a SR image. The proposed LESRCNN can obtain a high-quality image by a model fordifferent scales. Extensive experiments demonstrate that the proposed LESRCNN outperforms state-of-the-arts on SISR in terms of qualitative and quantitative evaluation.## Requirements (Pytorch)
#### Pytorch 0.41
#### Python 2.7
#### torchvision
#### openCv for Python
#### HDF5 for Python
#### Numpy, Scipy
#### Pillow, Scikit-image
#### importlib## Commands
### Training datasets
#### The training dataset is downloaded at https://pan.baidu.com/s/1uqdUsVjnwM_6chh3n46CqQ (secret code:auh1)(baiduyun) or https://drive.google.com/file/d/1TNZeV0pkdPlYOJP1TdWvu5uEroH-EmP8/view (google drive)### Test datasets
#### The test dataset of Set5 is downloaded at 链接:https://pan.baidu.com/s/1YqoDHEb-03f-AhPIpEHDPQ (secret code:atwu) (baiduyun) or https://drive.google.com/file/d/1hlwSX0KSbj-V841eESlttoe9Ew7r-Iih/view?usp=sharing (google drive)
#### The test dataset of Set14 is downloaded at 链接:https://pan.baidu.com/s/1GnGD9elL0pxakS6XJmj4tA (secret code:vsks) (baiduyun) or https://drive.google.com/file/d/1us_0sLBFxFZe92wzIN-r79QZ9LINrxPf/view?usp=sharing (google drive)
#### The test dataset of B100 is downloaded at 链接:https://pan.baidu.com/s/1GV99jmj2wrEEAQFHSi8jWw (secret code:fhs2) (baiduyun) or https://drive.google.com/file/d/1G8FCPxPEVzaBcZ6B-w-7Mk8re2WwUZKl/view?usp=sharing (google drive)
#### The test dataset of Urban100 is downloaded at 链接:https://pan.baidu.com/s/15k55SkO6H6A7zHofgHk9fw (secret code:2hny) (baiduyun) or https://drive.google.com/file/d/1yArL2Wh79Hy2i7_YZ8y5mcdAkFTK5HOU/view?usp=sharing (google drive)### preprocessing
### cd dataset
### python div2h5.py### Training a model for single scale
### x2
#### python x2/train.py --patch_size 64 --batch_size 64 --max_steps 600000 --decay 400000 --model lesrcnn --ckpt_name lesrcnn_x2 --ckpt_dir checkpoint/lesrcnn_x2 --scale 2 --num_gpu 1### x3
#### python x3/train.py --patch_size 64 --batch_size 64 --max_steps 600000 --decay 400000 --model lesrcnn --ckpt_name lesrcnn_x3 --ckpt_dir checkpoint/lesrcnn_x3 --scale 3 --num_gpu 1### x4
#### python x4/train.py --patch_size 64 --batch_size 64 --max_steps 600000 --decay 400000 --model lesrcnn --ckpt_name lesrcnn_x4 --ckpt_dir checkpoint/lesrcnn_x4 --scale 4 --num_gpu 1### Training a model for different scales (also regarded as blind SR)
#### python lesrcnn_b/train.py --patch_size 64 --batch_size 64 --max_steps 600000 --decay 400000 --model lesrcnn --ckpt_name lesrcnn --ckpt_dir checkpoint/lesrcnn --scale 0 --num_gpu 1### Test
### Single SR mode for x2
#### python x2/tcw_sample.py --model lesrcnn --test_data_dir dataset/Urban100 --scale 2 --ckpt_path ./x2/lesrcnn_x2.pth --sample_dir samples_singlemodel_urban100_x2### Single SR model for x3
#### python x3/tcw_sample.py --model lesrcnn --test_data_dir dataset/Urban100 --scale 3 --ckpt_path ./x3/lesrcnn_x3.pth --sample_dir samples_singlemodel_urban100_x3### Single SR model for x4
#### python x4/tcw_sample.py --model lesrcnn --test_data_dir dataset/Urban100 --scale 4 --ckpt_path ./x4/lesrcnn_x4.pth --sample_dir samples_singlemodel_urban100_x4### Using a model to test different scales of 2,3 and 4 (also regarded as blind SR)
#### python lesrcnn_b/tcw_sample_b.py --model lesrcnn --test_data_dir dataset/Urban100 --scale 2 --ckpt_path lesrcnn_b/lesrcnn.pth --sample_dir samples_singlemodel_urban100_x2#### python lesrcnn_b/tcw_sample_b.py --model lesrcnn --test_data_dir dataset/Urban100 --scale 3 --ckpt_path lesrcnn_b/lesrcnn.pth --sample_dir samples_singlemodel_urban100_x3
#### python lesrcnn_b/tcw_sample_b.py --model lesrcnn --test_data_dir dataset/Urban100 --scale 4 --ckpt_path lesrcnn_b/lesrcnn.pth --sample_dir samples_singlemodel_urban100_x4
### The Network architecture, principle and results of LESRCNN
### 1. Network architecture of LESRCNN.
![RUNOOB 图标](./results/fig1.jpg)### 2. Varying scales for upsampling operations.
![RUNOOB 图标](./results/fig2.jpg)### 3. Effectivenss of key components of LESRCNN.
![RUNOOB 图标](./results/Table1.jpg)### 4. Running time of key components of LESRCNN.
![RUNOOB 图标](./results/Table2.jpg)### 5. Complexity of key components of LESRCNN.
![RUNOOB 图标](./results/Table3.jpg)### 6. LESRCNN for x2, x3 and x4 on Set5.
![RUNOOB 图标](./results/Table4.jpg)### 7. LESRCNN for x2, x3 and x4 on Set14.
![RUNOOB 图标](./results/Table5.jpg)### 8. LESRCNN for x2, x3 and x4 on B100.
![RUNOOB 图标](./results/Table6.jpg)### 9. LESRCNN for x2, x3 and x4 on U100.
![RUNOOB 图标](./results/Table7.jpg)### 9. Running time of different methods on hr images of size 256x256, 512x512 and 1024x1024 for x2.
![RUNOOB 图标](./results/Table8.jpg)### 10. Complexities of different methods for x2.
![RUNOOB 图标](./results/Table9.jpg)### 11. Visual results of U100 for x2.
![RUNOOB 图标](./results/Fig3.jpg)### 12. Visual results of Set14 for x3.
![RUNOOB 图标](./results/Fig4.jpg)### 13. Visual results of B100 for x4.
![RUNOOB 图标](./results/Fig5.jpg)### If you cite this paper, please the following format:
#### 1.Tian C, Zhuge R, Wu Z, et al. Lightweight image super-resolution with enhanced CNN[J]. Knowledge-Based Systems, 2020: 106235.
#### 2.@article{tian2020lightweight,
#### title={Lightweight Image Super-Resolution with Enhanced CNN},
#### author={Tian, Chunwei and Zhuge, Ruibin and Wu, Zhihao and Xu, Yong and Zuo, Wangmeng and Chen, Chen and Lin, Chia-Wen},
#### journal={Knowledge-Based Systems},
#### pages={106235},
#### year={2020},
#### publisher={Elsevier}
#### }