Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hellocybernetics/TensorFlow2.0_Eager_Execution_Tutorials
Tutorials of TensorFlow eager execution
https://github.com/hellocybernetics/TensorFlow2.0_Eager_Execution_Tutorials
deep-learning eager-execution machine-learning tensorflow tutorial
Last synced: about 2 months ago
JSON representation
Tutorials of TensorFlow eager execution
- Host: GitHub
- URL: https://github.com/hellocybernetics/TensorFlow2.0_Eager_Execution_Tutorials
- Owner: hellocybernetics
- Created: 2018-12-01T03:44:32.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2019-12-01T10:36:46.000Z (about 5 years ago)
- Last Synced: 2024-08-01T03:14:36.764Z (4 months ago)
- Topics: deep-learning, eager-execution, machine-learning, tensorflow, tutorial
- Language: Jupyter Notebook
- Homepage:
- Size: 17.5 MB
- Stars: 30
- Watchers: 2
- Forks: 13
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-tensorflow-2 - TensorFlow2.0_Eager_Execution_Tutorials
README
# TensorFlow2.0_Eager_Execution_Tutorials
This repository provides tutorial code of TensorFlow2.0 . This tutorials refer to the PyTorch tutorials
https://github.com/yunjey/pytorch-tutorial
## Table of Contents
### 0. Low Level
* [Using_tf.Variable](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/00_lowlevel/LinearModel_using_tf_Variable.ipynb)
* [TF_Eager Basics](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/01_basics/TF_eager_basics.ipynb)
* [eager_vs_graph](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/00_lowlevel/eager_vs_graph.ipynb)### 1. Basics
* [KerasAPI Sequential_and_Model](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/01_basics/Sequential_and_Model.ipynb)
* [Linear Regression](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/01_basics/linear_regression.ipynb)
* [Logistic Regression](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/01_basics/logistic_regression.ipynb)
* [Feedforward Neural Network](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/01_basics/feed_forward_neural_network.ipynb)### 2. Intermediate
* [Convolutional Neural Network](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/02_intermediate/Convolutinal_Neural_Network.ipynb)
* [Convolutional Neural Network using Keras API](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/02_intermediate/Convolutinal_Neural_Network_using_KerasAPI.ipynb)
* [Deep Residual Network](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/02_intermediate/residual_network.ipynb)
* [Deep Residual Network using Keras API](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/02_interimediate/residual_network.ipynb)
* [Recurrent Neural Network using Keras API](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/02_intermediate/Recurrent_Neural_Network.ipynb)
* [Bidirectional Recurrent Neural Network using Keras API](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/02_intermediate/Bidrectional_Recurrent_Neural_Network.ipynb)
* Language Model (RNN-LM)### 3. Advanced
* [Generative Adversarial Network](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/03_advanced/Generative_Adversarial_Network.ipynb)
* [Variational Auto-Encoder](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/03_advanced/Variational_Auto_Encoder.ipynb)
* [Graph Convolution](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/03_advanced/graph_convnet.ipynb)
* Neural Style Transfer
* Image Captioning (CNN-RNN)### 4. Probability
* [MCMC Regression with JointDistribution](https://github.com/hellocybernetics/TensorFlow2.0_Eager_Execution_Tutorials/blob/master/tutorials/04_probability/Regiression_with_tfd.JointDistributionCoroutine.ipynb)
* [Variational Regression with JointDistribution](https://github.com/hellocybernetics/TensorFlow2.0_Eager_Execution_Tutorials/blob/master/tutorials/04_probability/VariationalRegression_JointDistribution.ipynb)
* [basic modeling with tfp.layers](https://github.com/hellocybernetics/TensorFlow2.0_Eager_Execution_Tutorials/blob/master/tutorials/04_probability/probabilistic_model_by_tfp_layers.ipynb)### X. Others
* [Hyper Parameter Optmization](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/99_others/hyper_parameter_optimization_using_optuna.ipynb)
* [eager vs pytorch speed](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/99_others/Eager_vs_PyTorch_speed.ipynb)
* [learning discontinuity](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/99_others/learninig_discontinuity.ipynb)
* [dropout bayes neural network](https://github.com/hellocybernetics/TensorFlow_Eager_Execution_Tutorials/blob/master/tutorials/99_others/dropout_bayes.ipynb)## Dependencies
My environment is Google Colab orPython 3.7
TensorFlow 2.0
TensorFlow Probability 0.9.0 (nightly)