https://github.com/helyousfi/ml_from_scratch
https://github.com/helyousfi/ml_from_scratch
Last synced: 7 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/helyousfi/ml_from_scratch
- Owner: helyousfi
- Created: 2022-07-26T19:47:48.000Z (about 3 years ago)
- Default Branch: main
- Last Pushed: 2022-08-14T00:33:38.000Z (about 3 years ago)
- Last Synced: 2025-02-26T20:37:17.418Z (7 months ago)
- Language: Python
- Size: 59.6 KB
- Stars: 0
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: readme.md
Awesome Lists containing this project
README
Matrix calculus :
- https://atmos.washington.edu/~dennis/MatrixCalculus.pdf
Cheatsheets:
- https://www.kaggle.com/getting-started/162119
Backpropagation for a linear layer :
- http://cs231n.stanford.edu/handouts/linear-backprop.pdfPython :
- (OOP) https://python-course.eu/oop/class-instance-attributes.php
- (Python + JSON) https://python-course.eu/applications-python/json-and-python.php
- Keep track of the median value# What is implemented so far :
## Machine Learning :
- Linear regression from scratch
- Neural Network from scratch
- Dense_layer
- ConvLayer
- FlattenLayer
- PoolingLayer
- Batch Normalization layer
- Categorical_crossEntropy
- Activation functions
- Backward propagation
- Gradient descent
## Computer Vision :
- Data augmentation for object detection:
- Horizontal flip
- Vertical flip
- Random scale
- Random Crop
- Random Rotate
- Loading dataset from JSON file
## Image processing
- Convolution from scratch
## Python
- OOP : Encapsulation, Inheritance, data hiding ...
- Decorators
- Generators
- Leetode : https://github.com/Garvit244/Leetcode
## Common questions on Computer Vision & ML
- https://www.projectpro.io/article/computer-vision-engineer-interview-questions/450
- https://www.interviewquery.com/p/computer-vision-interview-questions
- https://www.mlstack.cafe/blog/computer-vision-interview-questions
- https://github.com/badtyprr/computer-vision-interview (coding)
# TODO :
- Implement Evaluation Metrics
- Implement CutMix
- Implement ML models :
- MLP
- Logistic regression
- Support Vector machines
- Gradient descent
- Adam optimizer