An open API service indexing awesome lists of open source software.

https://github.com/helyousfi/ml_from_scratch


https://github.com/helyousfi/ml_from_scratch

Last synced: 7 months ago
JSON representation

Awesome Lists containing this project

README

          

Matrix calculus :
- https://atmos.washington.edu/~dennis/MatrixCalculus.pdf

Cheatsheets:
- https://www.kaggle.com/getting-started/162119

Backpropagation for a linear layer :
- http://cs231n.stanford.edu/handouts/linear-backprop.pdf

Python :
- (OOP) https://python-course.eu/oop/class-instance-attributes.php
- (Python + JSON) https://python-course.eu/applications-python/json-and-python.php
- Keep track of the median value

# What is implemented so far :
## Machine Learning :
- Linear regression from scratch
- Neural Network from scratch
- Dense_layer
- ConvLayer
- FlattenLayer
- PoolingLayer
- Batch Normalization layer
- Categorical_crossEntropy
- Activation functions
- Backward propagation
- Gradient descent

## Computer Vision :
- Data augmentation for object detection:
- Horizontal flip
- Vertical flip
- Random scale
- Random Crop
- Random Rotate
- Loading dataset from JSON file
## Image processing
- Convolution from scratch

## Python
- OOP : Encapsulation, Inheritance, data hiding ...
- Decorators
- Generators
- Leetode : https://github.com/Garvit244/Leetcode

## Common questions on Computer Vision & ML
- https://www.projectpro.io/article/computer-vision-engineer-interview-questions/450
- https://www.interviewquery.com/p/computer-vision-interview-questions
- https://www.mlstack.cafe/blog/computer-vision-interview-questions
- https://github.com/badtyprr/computer-vision-interview (coding)

# TODO :
- Implement Evaluation Metrics
- Implement CutMix
- Implement ML models :
- MLP
- Logistic regression
- Support Vector machines
- Gradient descent
- Adam optimizer