An open API service indexing awesome lists of open source software.

https://github.com/hi-space/dl-book

Gitbook page that summarizes the CS231N and RL.
https://github.com/hi-space/dl-book

ai cs231n gitbook reinforcement-learning

Last synced: 3 months ago
JSON representation

Gitbook page that summarizes the CS231N and RL.

Awesome Lists containing this project

README

        

# Initial page

## CS231N

| Lecture | Description | Appendix |
| :---: | :--- | :--- |
| 1 | [Course Introduction](https://app.gitbook.com/@hispace-j/s/space/cs231n/1-introduction)​ | |
| 2 | [Image Classification](https://app.gitbook.com/@hispace-j/s/space/cs231n/2-image-classification) | |
| 3 | [Loss Functions and Optimization](https://app.gitbook.com/@hispace-j/s/space/cs231n/3-loss-functions-and-optimization) | |
| 4 | [Backpropagation and Neural Networks](https://app.gitbook.com/@hispace-j/s/space/cs231n/4-backpropagation-and-neural-networks) | |
| 5 | [Convolutional Neural Networks](https://app.gitbook.com/@hispace-j/s/space/cs231n/5-convolutional-neural-network) | [CNN](https://app.gitbook.com/@hispace-j/s/space/cs231n/5-1-appendix-cnn) |
| 6 | [Training Neural Networks, part I](https://app.gitbook.com/@hispace-j/s/space/cs231n/6-training-neural-network-1) | |
| 7 | [Training Neural Networks, part II](https://app.gitbook.com/@hispace-j/s/space/cs231n/7-training-neural-network-2) | |
| 8 | [Deep Learning Software](https://app.gitbook.com/@hispace-j/s/space/cs231n/8-deep-learning-software) | |
| 9 | [CNN Architectures](https://app.gitbook.com/@hispace-j/s/space/cs231n/9-cnn-architectures) | |
| 10 | [Recurrent Neural Networks](https://app.gitbook.com/@hispace-j/s/space/cs231n/10-recurrent-neural-network) | [RNN](https://app.gitbook.com/@hispace-j/s/space/cs231n/10-1-appendix-rnn) |
| 11 | Detection and Segmentation | |
| 12 | Visualizing and Understanding | |
| 13 | Generative Models | |
| 14 | Deep Reinforcement Learning | |
| 15 | Efficient Methods and Hardware for Deep Learning | |
| 16 | Adversarial Examples and Adversarial Training | |

## Object Detection

| Subject |
| :---: |
| [R-CNN](https://app.gitbook.com/@hispace-j/s/space/~/edit/drafts/-Ll_rf0urRgPXbaa3sgB/object-detection/r-cnn) |
| [Fast RCNN](https://app.gitbook.com/@hispace-j/s/space/~/edit/drafts/-Ll_rf0urRgPXbaa3sgB/object-detection/fast-rcnn) |
| [Faster RCNN](https://app.gitbook.com/@hispace-j/s/space/~/edit/drafts/-Ll_rf0urRgPXbaa3sgB/object-detection/faster-r-cnn) |
| [YOLO](https://app.gitbook.com/@hispace-j/s/space/~/edit/drafts/-Ll_rf0urRgPXbaa3sgB/object-detection/yolo) |

## Reinforcement Learning

| Lecture | Description |
| :---: | :--- |
| 1 | [Introduction to Reinforcement Learning](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/1-introduction) |
| 2 | [Markov Decision Processes](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/2-finite-markov-decision-processes) |
| 3 | [Planning by Dynamic Programming](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/3-dynamic-programming) |
| 4 | [Model-Free Prediction](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/4-model-free-prediction) |
| 5 | [Model-Free Control](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/5-model-free-control) |
| 6 | [Value Function Approximation](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/6-value-function-approximation) |
| 7 | [Policy Gradient Methods](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/7-policy-gradient) |

## RL Algorithm

| Subject |
| :---: |
| [DQN](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/dqn) |
| DDQN |
| [A3C](https://app.gitbook.com/@hispace-j/s/ai-space/reinforcement-learning/a3c) |
| DDPG |
| TRPO |
| PPO |