https://github.com/hissain/jscipy
Java Scientific Computing Library for Signal Processing, Filters, and Transformations. A NumPy/SciPy port for JVM & Android, used in Machine Learning and Data Science.
https://github.com/hissain/jscipy
android chebyshev-filter cubic-splines data-science dsp fft findpeaks hilbert-transform interpolation java machine-learning numerical-computing python resample savitzky-golay scientific-computing scipy scipy-signal signal-processing
Last synced: 13 days ago
JSON representation
Java Scientific Computing Library for Signal Processing, Filters, and Transformations. A NumPy/SciPy port for JVM & Android, used in Machine Learning and Data Science.
- Host: GitHub
- URL: https://github.com/hissain/jscipy
- Owner: hissain
- License: mit
- Created: 2025-11-11T17:30:11.000Z (3 months ago)
- Default Branch: main
- Last Pushed: 2026-01-14T19:06:06.000Z (22 days ago)
- Last Synced: 2026-01-14T21:39:40.383Z (21 days ago)
- Topics: android, chebyshev-filter, cubic-splines, data-science, dsp, fft, findpeaks, hilbert-transform, interpolation, java, machine-learning, numerical-computing, python, resample, savitzky-golay, scientific-computing, scipy, scipy-signal, signal-processing
- Language: Java
- Homepage: https://hissain.github.io/jscipy
- Size: 8.11 MB
- Stars: 7
- Watchers: 0
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- fucking-awesome-datascience - jSciPy - A Java port of SciPy's signal processing module, offering filters, transformations, and other scientific computing utilities. (The Data Science Toolbox / General Machine Learning Packages)
- awesome-datascience - jSciPy - A Java port of SciPy's signal processing module, offering filters, transformations, and other scientific computing utilities. (The Data Science Toolbox / General Machine Learning Packages)
- awesome-machine-learning - jSciPy - A Java port of SciPy's signal processing module, offering filters, transformations, and other scientific computing utilities. (Java / [Tools](#tools-1))
- awesome-java - jSciPy - jSciPy is a Java library designed for scientific computing, offering functionalities inspired by popular scientific computing libraries. It currently provides modules for signal processing, including Butterworth filters, peak finding algorithms, and an RK4 solver for ordinary differential equations. (Projects / Science)
- fucking-awesome-machine-learning - jSciPy - A Java port of SciPy's signal processing module, offering filters, transformations, and other scientific computing utilities. (Java / [Tools](#tools-1))
- fucking-awesome-java - jSciPy - jSciPy is a Java library designed for scientific computing, offering functionalities inspired by popular scientific computing libraries. It currently provides modules for signal processing, including Butterworth filters, peak finding algorithms, and an RK4 solver for ordinary differential equations. (Projects / Science)
README
# jSciPy: Java Scientific Computing Library

[](https://jitpack.io/#hissain/jscipy)

**jSciPy** is a comprehensive **Java Scientific Computing Library** designed for **Signal Processing**, **Machine Learning**, and **Data Science** on the JVM and Android. Inspired by Python's **SciPy** and **NumPy**, it provides high-performance implementations of essential algorithms.
It currently includes modules for:
* **Signal Processing**: Butterworth, Chebyshev, Elliptic, Bessel filters, 2D Convolution, Savitzky-Golay smoothing, Peak detection.
* **Transformations**: FFT (Fast Fourier Transform), Hilbert Transform, Welch PSD, Spectrogram, Convolution.
* **Math & Analysis**: RK4 ODE Solver, Interpolation (Linear, Cubic Spline), Resampling.
In modern machine learning workflows, most signal processing tasks rely on Python's SciPy utilities. However, there is no Java library that replicates SciPy's behavior with comparable completeness and consistency. This creates a significant gap for teams building ML or signal processing pipelines on the JVM. jSciPy aims to fill this gap, and the demand for such a library is higher than ever.
## Why jSciPy?
The table below compares jSciPy’s signal processing and scientific computing features with several other popular Java libraries, highlighting areas where jSciPy provides more comprehensive functionality.
| Feature / Characteristic | jSciPy | Commons Math | JDSP | TarsosDSP | IIRJ | EJML |
|---------------------------------------|---------------------------------|-------------------------|-------------------------------------------|---------------------------------|-----------------|-----------------|
| Primary Focus | **SciPy-style Signal + Scientific** | General Math/Stats | Java DSP Toolbox | Audio Processing | IIR Filter Only | Linear Algebra |
| Zero-Phase Filtering (`filtfilt`) | ✅ Yes (SciPy-compatible) | ❌ No | ❌ No | ❌ No | ❌ No | ❌ No |
| 2D Signal Ops (`conv2d`, `fft2`) | ✅ Yes | ❌ No | ❌ No | ❌ No | ❌ No | ❌ No |
| SciPy-like API Consistency | ✅ High (SciPy semantics) | ❌ Low | ⚠️ Partial Java DSP | ❌ No | ❌ No | ❌ No |
| Filtering Capabilities | ⭐⭐⭐⭐⭐ (IIR+FIR+advanced) | ⭐ Basic | ⭐⭐⭐ (IIR/FIR & adaptive) | ⭐⭐ (audio filters) | ⭐⭐ (IIR only) | ❌ No |
| Transforms (FFT/Hilbert) | ✅ FFT + Hilbert | Limited / Basic FFT only| ✅ FFT + Hilbert | ✅ FFT spectrum tools (audio) | ❌ No | ❌ No |
| Interpolation (Linear/Cubic) | ✅ Yes | ✅ Yes | ✅ Yes | ❌ No | ❌ No | ❌ No |
| ODE Solvers (RK4) | ✅ Yes | ✅ Yes | ❌ No | ❌ No | ❌ No | ❌ No |
| Signal Analysis (Peak/PSD) | ✅ Yes | ❌ No | ⚠️ Partial (peak detection) | ⚠️ Partial (audio metrics) | ❌ No | ❌ No |
| Welch PSD | ✅ Yes | ❌ No | ❌ No | ❌ No | ❌ No | ❌ No |
| Spectrogram | ✅ Yes | ❌ No | ✅ Yes | ✅ Yes | ❌ No | ❌ No |
| Window Functions | ✅ Yes | ❌ No | ✅ Yes | ✅ Yes | ❌ No | ❌ No |
| Savitzky-Golay Filter | ✅ Yes | ❌ No | ✅ Yes | ❌ No | ❌ No | ❌ No |
| Median Filter (`medfilt`) | ✅ Yes | ❌ No | ✅ Yes | ❌ No | ❌ No | ❌ No |
| Detrending | ✅ Yes | ❌ No | ✅ Yes | ❌ No | ❌ No | ❌ No |
| Real-Optimized FFT (`rfft`/`irfft`) | ✅ Yes | ❌ No | ✅ Yes | ❌ No | ❌ No | ❌ No |
| STFT / ISTFT Support | ✅ Yes (SciPy-like) | ❌ No | ✅ Yes (dedicated classes) | ⚠️ Partial (internal use only) | ❌ No | ❌ No |
| 1D Convolution with Modes (`convolve`)| ✅ Yes (with modes) | ❌ No | ⚠️ Partial (convolve1d, limited modes) | ⚠️ Partial (implied, no modes) | ❌ No | ❌ No |
| Resampling (`resample`) | ✅ Yes | ❌ No | ✅ Yes | ✅ Yes | ❌ No | ❌ No |
| Signal Padding Utilities (`padSignal`)| ✅ Yes | ❌ No | ❌ No | ❌ No | ❌ No | ❌ No |
| Configurable Peak Finding (`find_peaks` with prominence etc.) | ✅ Yes | ❌ No | ✅ Yes | ⚠️ Partial (spectral peaks only)| ❌ No | ❌ No |
## Features
* **Advanced Filtering**: Butterworth, Chebyshev, Elliptic, Bessel. Supports **zero-phase (`filtfilt`)**, causal (`lfilter`), and **Second-Order Sections (`sosfilt`)** modes.
* **2D Processing**: `convolve2d` (Full/Same/Valid), `fft2`, `ifft2`.
* **Transforms**: standard 1D `fft` / `ifft`, real-optimized `rfft` / `irfft`, `stft` / `istft` (Short-Time Fourier Transform), `hilbert` transform.
* **Smoothing & Analysis**: Savitzky-Golay, `find_peaks`, Welch's PSD, `spectrogram`, `detrend`, `resample`.
* **Window Functions**: Hanning, Hamming, Blackman, Kaiser.
## Accuracy & Precision
jSciPy is rigorously tested against Python's SciPy using a "Golden Master" approach. Below is a summary of the precision (RMSE) achieved across various modules:
| Module | Test Case | RMSE (Approx) | Status |
| :--- | :--- | :--- | :--- |
| **Filters** | Butterworth, Chebyshev, Elliptic, Bessel | `1e-14` to `1e-16` | ✅ Excellent |
| **FFT** | 1D FFT, RFFT, IFFT | `1e-15` to `1e-16` | ✅ Excellent |
| **Spectral** | Spectrogram, Welch, STFT/ISTFT | `1e-16` to `1e-18` | ✅ Excellent |
| **SOS Filt** | Second-Order Sections Filter | `1e-16` | ✅ Excellent |
| **2D Ops** | 2D FFT, 2D Convolution | `1e-16` | ✅ Excellent |
| **Math** | Interpolation, Resample | `1e-16` | ✅ Excellent |
| **ODE** | RK4 Solver | `8e-5` | ✅ Good (Method dependent) |
## Documentation
You can access full documentation javadoc of the jscipy library [HERE](https://hissain.github.io/jscipy).
## Getting Started
### Prerequisites
* Java Development Kit (JDK) 8 or higher
* Gradle (for building the project)
## How to Include as a Dependency (JitPack)
JitPack is a novel package repository for JVM projects. It builds GitHub projects on demand and provides ready-to-use artifacts (jar, javadoc, sources).
To use this library in your Gradle project, add the JitPack repository and the dependency to your `build.gradle` file:
```gradle
// In your root build.gradle (or settings.gradle for repository definition)
allprojects {
repositories {
mavenCentral()
maven { url 'https://jitpack.io' }
}
}
// In your app's build.gradle
dependencies {
implementation 'com.github.hissain:jSciPy:3.0.2' // Replace 3.0.2 with the desired version or commit hash
}
```
## Demo Android Application
A seperate demo android application is built on this library that might be helpful to understand how to consume this library. The application can be accessed [here](https://github.com/hissain/jscipy-android).
## Comparison Graphs
### Butterworth Filter Comparison

### Chebyshev Filter Comparison
**Type I:**

**Type II:**

### Elliptic Filter Comparison

### Bessel Filter Comparison

### RK4 Solver Comparison

### FindPeaks Comparison

### Interpolation Comparison

### FFT Comparison

### Welch's Method Comparison

### Spectrogram Comparison

### Resample Comparison

### Savitzky-Golay Comparison
**Smoothing:**

**Differentiation:**

### Detrend Comparison

### MedFilt Comparison

### 1D Convolve Comparison

### 2D Convolve Comparison

### 2D FFT Comparison

### Hilbert Transform Comparison

### Window Functions Comparison
Comparison of Bartlett, Flat Top, and Bohman Windows
## Usage Examples
### Digital Filters
All standard IIR filters (Butterworth, Chebyshev I/II, Elliptic, Bessel) are supported with consistent APIs.
```java
import com.hissain.jscipy.Signal;
public class FilterExample {
public static void main(String[] args) {
double[] signal = {/*... input data ...*/};
double fs = 100.0;
double fc = 10.0;
int order = 4;
// 1. Butterworth: Zero-phase vs Causal
double[] zeroPhase = Signal.filtfilt(signal, fs, fc, order);
double[] causal = Signal.lfilter(signal, fs, fc, order);
// 2. Chebyshev Type I (Ripple 1dB) & Type II (Stopband 20dB)
double[] cheby1 = Signal.cheby1_filtfilt(signal, fs, fc, order, 1.0);
double[] cheby2 = Signal.cheby2_filtfilt(signal, fs, fc, order, 20.0);
// 3. Elliptic (Ripple 1dB, Stopband 40dB)
double[] ellip = Signal.ellip_filtfilt(signal, fs, fc, order, 1.0, 40.0);
// 4. Bessel (Linear Phase)
double[] bessel = Signal.bessel_filtfilt(signal, fs, fc, order);
// Filter Modes: High-pass, Band-pass, Band-stop
// Available for all filter types (suffix: _highpass, _bandpass, _bandstop)
double[] bandPass = Signal.filtfilt_bandpass(signal, fs, 8.0, 4.0, order); // Center=10, Width=4
// 5. Second-Order Sections (SOS) Filtering
// If you have SOS coefficients (e.g., from Python/SciPy)
double[][] sos = { /* ... 6 coefficients per section ... */ };
double[] sosFiltered = Signal.sosfilt(signal, sos);
}
}
```
### Spectral Analysis & Transforms
Includes 1D/2D FFT, Hilbert Transform, Welch's Method, and Spectrograms.
```java
import com.hissain.jscipy.Signal;
import com.hissain.jscipy.signal.JComplex;
import com.hissain.jscipy.signal.fft.Welch;
import com.hissain.jscipy.signal.fft.Spectrogram;
import com.hissain.jscipy.signal.fft.Hilbert;
public class SpectralExample {
public static void main(String[] args) {
double[] signal = {/*... input data ...*/};
double fs = 1000.0;
// 1. FFT / IFFT
JComplex[] fft = Signal.fft(signal);
JComplex[] ifft = Signal.ifft(fft);
// 2. Real-optimized FFT (RFFT)
JComplex[] rfft = Signal.rfft(signal);
// 3. Welch's Method (PSD)
Welch.WelchResult psd = Signal.welch(signal, fs, 256);
// Access: psd.f (frequencies), psd.Pxx (power spectrum)
// 4. Spectrogram
Spectrogram.SpectrogramResult spec = Signal.spectrogram(signal, fs);
// Access: spec.frequencies, spec.times, spec.Sxx
// 5. Hilbert Transform (Analytic Signal)
Hilbert h = new Hilbert();
JComplex[] analytic = h.hilbert(signal);
// 6. Short-Time Fourier Transform (STFT)
JComplex[][] stft = Signal.stft(signal); // Uses default nperseg=256, noverlap=128
// 7. Inverse STFT
double[] reconstructed = Signal.istft(stft);
}
}
```
### Smoothing & Signal Operations
Common operations for signal conditioning and feature extraction.
```java
import com.hissain.jscipy.Signal;
import com.hissain.jscipy.signal.filter.SavitzkyGolayFilter;
import com.hissain.jscipy.signal.filter.MedFilt;
public class OperationsExample {
public static void main(String[] args) {
double[] signal = {/*... data ...*/};
// 1. Savitzky-Golay Smoothing
SavitzkyGolayFilter sg = new SavitzkyGolayFilter();
double[] smoothed = sg.savgol_filter(signal, 5, 2); // Window=5, PolyOrder=2
double[] deriv = sg.savgol_filter(signal, 5, 2, 1, 1.0); // 1st Derivative
// 2. Peak Detection
// Min Height=0.5, Min Distance=10, Min Prominence=0.2
int[] peaks = Signal.find_peaks(signal, 0.5, 10, 0.2);
// 3. Median Filter
double[] med = new MedFilt().medfilt(signal, 3); // Kernel=3
// 4. Convolution (Mode: SAME, FULL, VALID)
double[] window = {0.25, 0.5, 0.25};
double[] conv = Signal.convolve(signal, window, ConvolutionMode.SAME);
// 5. Detrending (Linear)
double[] detrended = Signal.detrend(signal, DetrendType.LINEAR);
// 6. Resampling (Up/Down sampling)
// Note: Resampling is part of the Math module
double[] resampled = com.hissain.jscipy.Math.resample(signal, NEW_LENGTH);
}
}
```
### Math & Interpolation
General-purpose numerical utilities.
```java
import com.hissain.jscipy.math.RK4Solver;
import com.hissain.jscipy.Math;
public class MathExample {
public static void main(String[] args) {
// 1. Interpolation (Linear & Cubic)
double[] x = {0, 1, 2}, y = {0, 1, 4};
double[] query = {0.5, 1.5};
double[] lin = Math.interp1d_linear(x, y, query);
double[] cub = Math.interp1d_cubic(x, y, query);
// 2. RK4 ODE Solver (dy/dt = -y)
RK4Solver solver = new RK4Solver();
RK4Solver.Solution sol = solver.solve((t, y) -> -y, y0, t0, tf, step);
}
}
```
## Contributing
Contributions are welcome! Please read our [Contribution Guidelines](CONTRIBUTING.md) for details on our workflow and coding standards. Feel free to submit issues or pull requests.
### Areas for Contribution (Help Wanted)
We are actively looking for contributors to help with:
1. **Performance Benchmarking**: Creating benchmarks for large datasets to compare Java's performance vs NumPy/SciPy.
2. **Feature Expansion**: Implementing missing window functions or additional filter types.
3. **Edge Case Robustness**: Improving handling of `NaN`, `Infinity`, and edge cases in signal processing algorithms.
4. **Documentation**: Adding more usage examples and javadocs.
## License
This project is licensed under the [MIT License](LICENSE).