Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hizhangp/yolo_tensorflow
Tensorflow implementation of YOLO, including training and test phase.
https://github.com/hizhangp/yolo_tensorflow
detection tensorflow yolo
Last synced: 4 days ago
JSON representation
Tensorflow implementation of YOLO, including training and test phase.
- Host: GitHub
- URL: https://github.com/hizhangp/yolo_tensorflow
- Owner: hizhangp
- License: mit
- Created: 2016-10-25T10:51:54.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2019-05-22T05:22:26.000Z (over 5 years ago)
- Last Synced: 2024-08-02T01:16:02.317Z (3 months ago)
- Topics: detection, tensorflow, yolo
- Language: Python
- Homepage:
- Size: 191 KB
- Stars: 794
- Watchers: 32
- Forks: 443
- Open Issues: 54
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - hizhangp/yolo_tensorflow
README
## YOLO_tensorflow
Tensorflow implementation of [YOLO](https://arxiv.org/pdf/1506.02640.pdf), including training and test phase.
### Installation
1. Clone yolo_tensorflow repository
```Shell
$ git clone https://github.com/hizhangp/yolo_tensorflow.git
$ cd yolo_tensorflow
```2. Download Pascal VOC dataset, and create correct directories
```Shell
$ ./download_data.sh
```3. Download [YOLO_small](https://drive.google.com/file/d/0B5aC8pI-akZUNVFZMmhmcVRpbTA/view?usp=sharing)
weight file and put it in `data/weight`4. Modify configuration in `yolo/config.py`
5. Training
```Shell
$ python train.py
```6. Test
```Shell
$ python test.py
```### Requirements
1. Tensorflow2. OpenCV