Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hkmztrk/DeepDTA
https://github.com/hkmztrk/DeepDTA
convolutional-neural-networks protein-ligand-interactions
Last synced: 3 months ago
JSON representation
- Host: GitHub
- URL: https://github.com/hkmztrk/DeepDTA
- Owner: hkmztrk
- Created: 2018-01-28T17:32:52.000Z (almost 7 years ago)
- Default Branch: master
- Last Pushed: 2023-09-22T19:19:45.000Z (about 1 year ago)
- Last Synced: 2024-07-16T19:03:52.827Z (4 months ago)
- Topics: convolutional-neural-networks, protein-ligand-interactions
- Language: Python
- Size: 10.7 MB
- Stars: 217
- Watchers: 10
- Forks: 107
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-drug-discovery - [Python Reference
README
# About DeepDTA: deep drug-target binding affinity prediction
The approach used in this work is the modeling of protein sequences and compound 1D representations (SMILES) with convolutional neural networks (CNNs) to predict the binding affinity value of drug-target pairs.
![Figure](https://github.com/hkmztrk/DeepDTA/blob/master/docs/figures/deepdta.PNG)
# Installation## Data
Please see the [README](https://github.com/hkmztrk/DeepDTA/blob/master/data/README.md) for detailed explanation.
## Requirements
You'll need to install following in order to run the codes. Refer to [deepdta.yml](https://github.com/hkmztrk/DeepDTA/blob/master/deepdta.yml) for a conda environment tested in Linux.
* [Python 3.4 <=](https://www.python.org/downloads/)
* [Keras 2.x](https://pypi.org/project/Keras/)
* [Tensorflow 1.x](https://www.tensorflow.org/install/)
* numpy
* matplotlib
* scikit-learnYou have to place "data" folder under "source" directory.
# Usage
```
python run_experiments.py --num_windows 32 \
--seq_window_lengths 8 12 \
--smi_window_lengths 4 8 \
--batch_size 256 \
--num_epoch 100 \
--max_seq_len 1000 \
--max_smi_len 100 \
--dataset_path 'data/kiba/' \
--problem_type 1 \
--log_dir 'logs/'```
**For citation:**
```
@article{ozturk2018deepdta,
title={DeepDTA: deep drug--target binding affinity prediction},
author={{\"O}zt{\"u}rk, Hakime and {\"O}zg{\"u}r, Arzucan and Ozkirimli, Elif},
journal={Bioinformatics},
volume={34},
number={17},
pages={i821--i829},
year={2018},
publisher={Oxford University Press}
}
```