Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hmmlearn/hmmlearn
Hidden Markov Models in Python, with scikit-learn like API
https://github.com/hmmlearn/hmmlearn
Last synced: 5 days ago
JSON representation
Hidden Markov Models in Python, with scikit-learn like API
- Host: GitHub
- URL: https://github.com/hmmlearn/hmmlearn
- Owner: hmmlearn
- License: bsd-3-clause
- Created: 2014-03-23T10:33:09.000Z (almost 11 years ago)
- Default Branch: main
- Last Pushed: 2024-10-31T09:14:35.000Z (3 months ago)
- Last Synced: 2025-01-14T00:00:15.315Z (12 days ago)
- Language: Python
- Homepage: http://hmmlearn.readthedocs.org
- Size: 2.2 MB
- Stars: 3,099
- Watchers: 123
- Forks: 739
- Open Issues: 71
-
Metadata Files:
- Readme: README.rst
- Changelog: CHANGES.rst
- License: LICENSE.txt
- Authors: AUTHORS.rst
Awesome Lists containing this project
- awesome-computational-neuroscience - Nengo - The Nengo Brain Maker is a Python package for building, testing, and deploying neural networks. (Package / Computational Neuroscience)
- awesome_time_series_in_python - HMMLearn - learn compatible API | (Libraries)
- awesome-time-series - hmmlearn - learn` like API. (๐ฆ Packages / Python)
- awesome-meteo - hmmlearn - learn like API (Uncategorized / Uncategorized)
- awesome-list - hmmlearn - Hidden Markov Models in Python, with scikit-learn like API. (Linear Algebra / Statistics Toolkit / Statistical Toolkit)
- awesome-python-machine-learning-resources - GitHub - 13% open ยท โฑ๏ธ 04.07.2022): (ๆฆ็็ป่ฎก)
README
hmmlearn
========| |GitHub| |PyPI|
| |Read the Docs| |Build| |CodeCov|.. |GitHub|
image:: https://img.shields.io/badge/github-hmmlearn%2Fhmmlearn-brightgreen
:target: https://github.com/hmmlearn/hmmlearn
.. |PyPI|
image:: https://img.shields.io/pypi/v/hmmlearn.svg?color=brightgreen
:target: https://pypi.python.org/pypi/hmmlearn
.. |Read the Docs|
image:: https://readthedocs.org/projects/hmmlearn/badge/?version=latest
:target: http://hmmlearn.readthedocs.io/en/latest/?badge=latest
.. |Build|
image:: https://img.shields.io/github/actions/workflow/status/hmmlearn/hmmlearn/build.yml?branch=main
:target: https://github.com/hmmlearn/hmmlearn/actions
.. |CodeCov|
image:: https://img.shields.io/codecov/c/github/hmmlearn/hmmlearn
:target: https://codecov.io/gh/hmmlearn/hmmlearnhmmlearn is a set of algorithms for **unsupervised** learning and inference
of Hidden Markov Models. For supervised learning learning of HMMs and similar
models see seqlearn_... _seqlearn: https://github.com/larsmans/seqlearn
**Note**: This package is under limited-maintenance mode.
Important links
===============* Official source code repo: https://github.com/hmmlearn/hmmlearn
* HTML documentation (stable release): https://hmmlearn.readthedocs.org/en/stable
* HTML documentation (development version): https://hmmlearn.readthedocs.org/en/latestDependencies
============The required dependencies to use hmmlearn are
* Python >= 3.6
* NumPy >= 1.10
* scikit-learn >= 0.16You also need Matplotlib >= 1.1.1 to run the examples and pytest >= 2.6.0 to run
the tests.Installation
============Requires a C compiler and Python headers.
To install from PyPI::
pip install --upgrade --user hmmlearn
To install from the repo::
pip install --user git+https://github.com/hmmlearn/hmmlearn