Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hofbi/mv-roi
Multi-View Region of Interest Prediction for Autonomous Driving Using Semi-Supervised Labeling
https://github.com/hofbi/mv-roi
carla-driving-simulator carla-simulator dataset region-of-interest
Last synced: about 16 hours ago
JSON representation
Multi-View Region of Interest Prediction for Autonomous Driving Using Semi-Supervised Labeling
- Host: GitHub
- URL: https://github.com/hofbi/mv-roi
- Owner: hofbi
- License: mit
- Created: 2020-06-15T13:27:17.000Z (over 4 years ago)
- Default Branch: master
- Last Pushed: 2022-06-23T14:51:23.000Z (over 2 years ago)
- Last Synced: 2024-07-21T16:42:45.965Z (6 months ago)
- Topics: carla-driving-simulator, carla-simulator, dataset, region-of-interest
- Language: Python
- Homepage:
- Size: 11.7 MB
- Stars: 1
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# MV-ROI: Multi-View ROI Prediction and Annotation
[![Actions Status](https://github.com/hofbi/mv-roi/workflows/CI/badge.svg)](https://github.com/hofbi/mv-roi)
[![Actions Status](https://github.com/hofbi/mv-roi/workflows/CodeQL/badge.svg)](https://github.com/hofbi/mv-roi)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)## Installation
Setup the annotation framework environment
```shell
make setup
```Read the [bdda setup](bdda#setup-the-vnvironment) for how to setup the BDD-A model.
## Dataset
[Download](https://mediatum.ub.tum.de/1548761) the MV-ROI dataset.
* Use our [dataset extractor](annotation#extract-data) to export image and label files from the dataset.
* Prepare the data for training the bdda model with the [prepare](bdda#prepare) module or directly use our finetuned weights in `bdda/weights`.## Annotation
![MV-ROI](doc/pipeline.jpg "MV-ROI Annotation Pipeline")
General workflow of the annotation framework.
1. **Data Generation:** Use your own data and record from CARLA with our [record](record) module.
1. **Data Format (Optional):** Data require [this](annotation#naming-convention) format. Details for reindexing [here](annotation#reindex).
1. **Data Preparation:** Prepare the data to be used by the bdda model with the [prepare](bdda#prepare) module.
1. **Model Prediction:** Generate ROI predictions for the data using the [finetuned model](bdda#prediction).
1. **Reformat Data:** Reformat the data from bdda naming conventions to ours to be used in the further pipeline with the [reformat](bdda#reformat) module.
1. **Pseudo Label Generation:** [Generate](annotation#generate-pseudo-label) json labels from model predictions.
1. **Create Consistent ROI Labels:** [Create](annotation#create-roi-consistency) consistent ROI json labels over all views.
1. **Merge Samples:** [Merge](annotation#merge) all camera views of a sample
1. **Human Inspection:** Use the tool [labelme](https://github.com/wkentaro/labelme) to manually inspect and manipulate the labels
1. **Split Samples:** [Split](annotation#split) all camera views of a sample
1. **Generate HDF5:** [Generate](annotation#hdf5) HDF5 files from labels and imagesFor details read the documentation of the [Annotation Framework](annotation), [BDDA Model](bdda) and [Record Module](record).
## Paper
If you use MV-ROI please cite our paper.
*Multi-View Region of Interest Prediction for Autonomous Driving Using Semi-Supervised Labeling, Markus Hofbauer, Christopher B. Kuhn, Jiaming Meng, Goran Petrovic, Eckehard Steinbach; ITSC 2020* [[PDF](https://www.researchgate.net/publication/342171521_Multi-View_Region_of_Interest_Prediction_for_Autonomous_Driving_Using_Semi-Supervised_Labeling)]
```tex
@inproceedings{hofbauer_2020,
title = {Multi-View Region of Interest Prediction for Autonomous Driving Using Semi-Supervised Labeling},
booktitle = {23rd IEEE International Conference on Intelligent Transportation Systems (ITSC)},
publisher = {IEEE},
author = {Hofbauer, Markus and Kuhn, Christopher B. and Meng, Jiaming and Petrovic, Goran and Steinbach, Eckehard},
address = {Rhodes, Greece}
month = sep,
year = {2020},
pages = {1--6},
}
```## Development
We use [pre-commit](https://pre-commit.com/) to manage our git pre-commit hooks.
`pre-commit` is automatically installed from `requirements-dev.txt`.
To set it up, call```sh
git config --unset-all core.hooksPath # may fail if you don't have any hooks set, but that's ok
pre-commit install --overwrite
```### Hooks Usage
With `pre-commit`, you don't use your linters/formatters directly anymore, but through `pre-commit`:
```sh
pre-commit run --file path/to/file1.cpp tools/second_file.py # run on specific file(s)
pre-commit run --all-files # run on all files tracked by git
pre-commit run --from-ref origin/master --to-ref HEAD # run on all files changed on current branch, compared to master
pre-commit run --file # run specific hook on specific file
```