Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/holmrenser/taxus
Gaussian Process models for transcriptome data
https://github.com/holmrenser/taxus
Last synced: about 1 month ago
JSON representation
Gaussian Process models for transcriptome data
- Host: GitHub
- URL: https://github.com/holmrenser/taxus
- Owner: holmrenser
- Created: 2022-03-25T13:00:13.000Z (almost 3 years ago)
- Default Branch: main
- Last Pushed: 2022-04-28T07:41:39.000Z (over 2 years ago)
- Last Synced: 2024-11-16T19:08:24.335Z (about 2 months ago)
- Language: Python
- Size: 2.3 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- Changelog: CHANGELOG.md
- Contributing: CONTRIBUTING.md
Awesome Lists containing this project
README
# _taxus_
### Gaussian Process models for transcriptome data
[![PyPI version](https://badge.fury.io/py/taxus.svg)](https://badge.fury.io/py/taxus)
[![CI](https://github.com/holmrenser/taxus/actions/workflows/ci.yml/badge.svg)](https://github.com/holmrenser/taxus/actions/workflows/ci.yml)
[![Coverage Status](https://coveralls.io/repos/github/holmrenser/taxus/badge.svg?branch=main)](https://coveralls.io/github/holmrenser/taxus?branch=main)```
pip install taxus
``````python
import taxus as tx# at the moment importing data has to be handled by the user
covariates, counts = get_mock_data()
gp = tx.GP('~ time + treatment', covariates, counts, kernel='rbf', likelihood='poisson')
elbo = gp.fit()likelihood_ratio_rbf = tx.LRT(
full_formula='~ time + treatment',
reduced_formula='~ time',
covariates=covariates,
expression=counts,
kernel='rbf',
likelihood='nb'
)likelihood_ratio_linear = tx.LRT(
full_formula='~ C(time) + C(treatment) + C(time) : C(treatment)',
reduced_formula='~ C(time) + C(treatment)',
covariates=covariates,
expression=counts,
kernel='linear',
likelihood='nb'
)
```