Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hombit/load_ztfdr_for_tape
Load ZTF DRs with LINCC Frameworks' TAPE
https://github.com/hombit/load_ztfdr_for_tape
Last synced: 24 days ago
JSON representation
Load ZTF DRs with LINCC Frameworks' TAPE
- Host: GitHub
- URL: https://github.com/hombit/load_ztfdr_for_tape
- Owner: hombit
- License: mit
- Created: 2023-12-11T13:23:43.000Z (about 1 year ago)
- Default Branch: main
- Last Pushed: 2023-12-12T22:19:01.000Z (about 1 year ago)
- Last Synced: 2024-10-28T12:09:44.834Z (2 months ago)
- Language: Python
- Size: 2.15 MB
- Stars: 0
- Watchers: 2
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# load_ztfdr_for_tape
[![Template](https://img.shields.io/badge/Template-LINCC%20Frameworks%20Python%20Project%20Template-brightgreen)](https://lincc-ppt.readthedocs.io/en/latest/)
[![PyPI](https://img.shields.io/pypi/v/load_ztfdr_for_tape?color=blue&logo=pypi&logoColor=white)](https://pypi.org/project/load_ztfdr_for_tape/)
[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/hombit/load_ztfdr_for_tape/smoke-test.yml)](https://github.com/hombit/load_ztfdr_for_tape/actions/workflows/smoke-test.yml)
[![codecov](https://codecov.io/gh/hombit/load_ztfdr_for_tape/branch/main/graph/badge.svg)](https://codecov.io/gh/hombit/load_ztfdr_for_tape)
[![Read the Docs](https://img.shields.io/readthedocs/load_ztfdr_for_tape)](https://load_ztfdr_for_tape.readthedocs.io/)
[![benchmarks](https://img.shields.io/github/actions/workflow/status/hombit/load_ztfdr_for_tape/asv-main.yml?label=benchmarks)](https://hombit.github.io/load_ztfdr_for_tape/)This project was automatically generated using the LINCC-Frameworks
[python-project-template](https://github.com/lincc-frameworks/python-project-template).Get Dask DataFrames from ZTF DRs for [LINCC Frameworks' Tape](https://github.com/lincc-frameworks/tape/).
Basically, you need a single function call to get "object" (metadata) and "source" (photometry per detection) tables from a ZTF DR:```python
from load_ztfdr_for_tape import load_object_source_frames_from_path
from tape import Ensemble, ColumnMapper# Replace with the actual path, here we use few files from the test data
ztf_dr_path = './tests/data/lc_dr19'
objects, sources = load_object_source_frames_from_path(ztf_dr_path)
column_mapper = ColumnMapper(
id_col='objectid',
time_col='hmjd',
flux_col='mag',
err_col='magerr',
band_col='filterid',
)# Replace `False` with dask.distributed.Client instance for parallel execution
ens = Ensemble(client=False)
ens.from_dask_dataframe(
object_frame=objects,
source_frame=sources,
column_mapper=column_mapper,
# Do not make an initial sync of the tables
sync_tables=False,
# We did sort the tables by objectid
sorted=True,
sort=False,
)
```