Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/honlan/dmt
Disentangled Makeup Transfer with Generative Adversarial Network
https://github.com/honlan/dmt
computer-vision deep-learning disentangled-representations generative-adversarial-network makeup-transfer tensorflow
Last synced: about 2 months ago
JSON representation
Disentangled Makeup Transfer with Generative Adversarial Network
- Host: GitHub
- URL: https://github.com/honlan/dmt
- Owner: Honlan
- Created: 2019-06-28T07:14:11.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2019-07-15T06:31:25.000Z (over 5 years ago)
- Last Synced: 2023-10-20T18:30:42.317Z (about 1 year ago)
- Topics: computer-vision, deep-learning, disentangled-representations, generative-adversarial-network, makeup-transfer, tensorflow
- Language: Python
- Size: 45.2 MB
- Stars: 116
- Watchers: 7
- Forks: 18
- Open Issues: 10
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# DMT
TensorFlow implementation of [Disentangled Makeup Transfer with Generative Adversarial Network](https://arxiv.org/abs/1907.01144)
The facial images are disentangled into identity codes and makeup codes to achieve diverse scenarios of makeup transfer
## Results
![pairwise makeup transfer](output/pairwise.jpg)
![interpolated makeup transfer](output/interpolated.jpg)
![hybrid makeup transfer](output/hybrid.jpg)
![multimodal makeup transfer](output/multimodal.jpg)
## Files
- `main.py`: the main code
- `dmt.pb`: the pre-trained model
- `faces`: images of makeup and non-makeup faces
- `output`: the generated images## Usage
```
python main.py
```If you want to use other non-makeup or makeup images, set the paths to the target images
```
no_makeup = os.path.join('faces', 'no_makeup', 'xfsy_0055.png')
makeup_a = os.path.join('faces', 'makeup', 'XMY-074.png')
makeup_b = os.path.join('faces', 'makeup', 'vFG112.png')
```