Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hrbrmstr/sergeant
:guardsman: Tools to Transform and Query Data with 'Apache' 'Drill'
https://github.com/hrbrmstr/sergeant
apache-drill dplyr drill parquet-files r r-cyber rstats sql
Last synced: 3 months ago
JSON representation
:guardsman: Tools to Transform and Query Data with 'Apache' 'Drill'
- Host: GitHub
- URL: https://github.com/hrbrmstr/sergeant
- Owner: hrbrmstr
- License: other
- Created: 2016-06-03T02:03:16.000Z (over 8 years ago)
- Default Branch: master
- Last Pushed: 2022-04-18T13:42:13.000Z (over 2 years ago)
- Last Synced: 2024-10-12T21:24:15.696Z (3 months ago)
- Topics: apache-drill, dplyr, drill, parquet-files, r, r-cyber, rstats, sql
- Language: R
- Homepage: https://hrbrmstr.github.io/sergeant/
- Size: 17.8 MB
- Stars: 126
- Watchers: 14
- Forks: 13
- Open Issues: 7
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- awesome-shiny-extensions - sergeant - Transform and query data with Apache Drill. (Backend / Database)
- jimsghstars - hrbrmstr/sergeant - :guardsman: Tools to Transform and Query Data with 'Apache' 'Drill' (R)
README
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1248912.svg)](https://doi.org/10.5281/zenodo.1248912)
[![CRAN\_Status\_Badge](https://www.r-pkg.org/badges/version/sergeant)](https://cran.r-project.org/package=sergeant)# 💂 sergeant
Tools to Transform and Query Data with ‘Apache’ ‘Drill’
## \*\* IMPORTANT \*\*
Version 0.7.0+ (a.k.a. the main branch) splits off the JDBC interface
into a separate package `sergeant.caffeinated`
([GitHub](https://github.com/hrbrmstr/sergeant-caffeinated)).I\# Description
Drill + `sergeant` is (IMO) a streamlined alternative to Spark +
`sparklyr` if you don’t need the ML components of Spark (i.e. just need
to query “big data” sources, need to interface with parquet, need to
combine disparate data source types — json, csv, parquet, rdbms - for
aggregation, etc). Drill also has support for spatial queries.Using Drill SQL queries that reference parquet files on a local linux or
macOS workstation can often be more performant than doing the same data
ingestion & wrangling work with R (especially for large or disperate
data sets). Drill can often help further streamline workflows that
involve wrangling many tiny JSON files on a daily basis.Drill can be obtained from (use
“Direct File Download”). Drill can also be installed via
[Docker](https://drill.apache.org/docs/running-drill-on-docker/). For
local installs on Unix-like systems, a common/suggestion location for
the Drill directory is `/usr/local/drill` as the install directory.Drill embedded (started using the `$DRILL_BASE_DIR/bin/drill-embedded`
script) is a super-easy way to get started playing with Drill on a
single workstation and most of many workflows can “get by” using Drill
this way.There are a few convenience wrappers for various informational SQL
queries (like `drill_version()`). Please file an PR if you add more.Some of the more “controlling vs data ops” REST API functions aren’t
implemented. Please file a PR if you need those.The following functions are implemented:
**`DBI`** (REST)
- A “just enough” feature complete R `DBI` driver has been implemented
using the Drill REST API, mostly to facilitate the `dplyr`
interface. Use the `RJDBC` driver interface if you need more `DBI`
functionality.
- This also means that SQL functions unique to Drill have also been
“implemented” (i.e. made accessible to the `dplyr` interface). If
you have custom Drill SQL functions that need to be implemented
please file an issue on GitHub. Many should work without it, but
some may require a custom interface.**`dplyr`**: (REST)
- `src_drill`: Connect to Drill (using `dplyr`) + supporting functions
Note that a number of Drill SQL functions have been mapped to R
functions (e.g. `grepl`) to make it easier to transition from
non-database-backed SQL ops to Drill. See the help on
`drill_custom_functions` for more info on these helper Drill custom
function mappings.**Drill APIs**:
- `drill_connection`: Setup parameters for a Drill server/cluster
connection
- `drill_active`: Test whether Drill HTTP REST API server is up
- `drill_cancel`: Cancel the query that has the given queryid
- `drill_functions`: Show all the available Drill built-in functions &
UDFs (Apache Drill 1.15.0+ required)
- `drill_jdbc`: Connect to Drill using JDBC
- `drill_metrics`: Get the current memory metrics
- `drill_options`: List the name, default, and data type of the system
and session options
- `drill_popts`: Show all the available Drill options (1.15.0+)
- `drill_profile`: Get the profile of the query that has the given
query id
- `drill_profiles`: Get the profiles of running and completed queries
- `drill_query`: Submit a query and return results
- `drill_set`: Set Drill SYSTEM or SESSION options
- `drill_settings_reset`: Changes (optionally, all) session settings
back to system defaults
- `drill_show_files`: Show files in a file system schema.
- `drill_show_schemas`: Returns a list of available schemas.
- `drill_stats`: Get Drillbit information, such as ports numbers
- `drill_status`: Get the status of Drill
- `drill_storage`: Get the list of storage plugin names and
configurations
- `drill_system_reset`: Changes (optionally, all) system settings back
to system defaults
- `drill_threads`: Get information about threads
- `drill_uplift`: Turn a columnar query results into a type-converted
tbl
- `drill_use`: Change to a particular schema.
- `drill_version`: Identify the version of Drill running**Helpers**
- `ctas_profile`: Generate a Drill CTAS Statement from a Query
- `drill_up`: sart a Dockerized Drill Instance \# `sdrill_down`: stop
a Dockerized Drill Instance by container id
- `howall_drill`: Show all dead and running Drill Docker containers
- `stopall_drill`: Prune all dead and running Drill Docker containers# Installation
``` r
install.packages("sergeant", repos = "https://cinc.rud.is")
# or
devtools::install_git("https://git.rud.is/hrbrmstr/sergeant.git")
# or
devtools::install_git("https://git.sr.ht/~hrbrmstr/sergeant")
# or
devtools::install_gitlab("hrbrmstr/sergeant")
# or
devtools::install_bitbucket("hrbrmstr/sergeant")
# or
devtools::install_github("hrbrmstr/sergeant")
```# Usage
### `dplyr` interface
``` r
library(sergeant)
library(tidyverse)# use localhost if running standalone on same system otherwise the host or IP of your Drill server
ds <- src_drill("localhost") #ds
db <- tbl(ds, "cp.`employee.json`")# without `collect()`:
count(db, gender, marital_status)
## # Source: lazy query [?? x 3]
## # Database: DrillConnection
## # Groups: gender
## gender marital_status n
##
## 1 F S 297
## 2 M M 278
## 3 M S 276
## 4 F M 304count(db, gender, marital_status) %>% collect()
## # A tibble: 4 x 3
## # Groups: gender [2]
## gender marital_status n
##
## 1 F S 297
## 2 M M 278
## 3 M S 276
## 4 F M 304group_by(db, position_title) %>%
count(gender) -> tmp2group_by(db, position_title) %>%
count(gender) %>%
ungroup() %>%
mutate(full_desc = ifelse(gender == "F", "Female", "Male")) %>%
collect() %>%
select(Title = position_title, Gender = full_desc, Count = n)
## # A tibble: 30 x 3
## Title Gender Count
##
## 1 President Female 1
## 2 VP Country Manager Male 3
## 3 VP Country Manager Female 3
## 4 VP Information Systems Female 1
## 5 VP Human Resources Female 1
## 6 Store Manager Female 13
## 7 VP Finance Male 1
## 8 Store Manager Male 11
## 9 HQ Marketing Female 2
## 10 HQ Information Systems Female 4
## # … with 20 more rowsarrange(db, desc(employee_id)) %>% print(n = 20)
## # Source: table [?? x 20]
## # Database: DrillConnection
## # Ordered by: desc(employee_id)
## employee_id full_name first_name last_name position_id position_title store_id department_id birth_date hire_date
##
## 1 999 Beverly … Beverly Dittmar 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 2 998 Elizabet… Elizabeth Jantzer 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 3 997 John Swe… John Sweet 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 4 996 William … William Murphy 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 5 995 Carol Li… Carol Lindsay 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 6 994 Richard … Richard Burke 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 7 993 Ethan Bu… Ethan Bunosky 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 8 992 Claudett… Claudette Cabrera 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 9 991 Maria Te… Maria Terry 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 10 990 Stacey C… Stacey Case 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 11 99 Elizabet… Elizabeth Horne 18 Store Tempora… 6 18 1976-10-05 1997-01-…
## 12 989 Dominick… Dominick Nutter 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 13 988 Brian Wi… Brian Willeford 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 14 987 Margaret… Margaret Clendenen 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 15 986 Maeve Wa… Maeve Wall 17 Store Permane… 8 17 1914-02-02 1998-01-…
## 16 985 Mildred … Mildred Morrow 16 Store Tempora… 8 16 1914-02-02 1998-01-…
## 17 984 French W… French Wilson 16 Store Tempora… 8 16 1914-02-02 1998-01-…
## 18 983 Elisabet… Elisabeth Duncan 16 Store Tempora… 8 16 1914-02-02 1998-01-…
## 19 982 Linda An… Linda Anderson 16 Store Tempora… 8 16 1914-02-02 1998-01-…
## 20 981 Selene W… Selene Watson 16 Store Tempora… 8 16 1914-02-02 1998-01-…
## # … with more rows, and 6 more variables: salary , supervisor_id , education_level ,
## # marital_status , gender , management_rolemutate(db, position_title = tolower(position_title)) %>%
mutate(salary = as.numeric(salary)) %>%
mutate(gender = ifelse(gender == "F", "Female", "Male")) %>%
mutate(marital_status = ifelse(marital_status == "S", "Single", "Married")) %>%
group_by(supervisor_id) %>%
summarise(underlings_count = n()) %>%
collect()
## # A tibble: 112 x 2
## supervisor_id underlings_count
##
## 1 0 1
## 2 1 7
## 3 5 9
## 4 4 2
## 5 2 3
## 6 20 2
## 7 21 4
## 8 22 7
## 9 6 4
## 10 36 2
## # … with 102 more rows
```### REST API
``` r
dc <- drill_connection("localhost")drill_active(dc)
## [1] TRUEdrill_version(dc)
## [1] "1.15.0"drill_storage(dc)$name
## [1] "cp" "dfs" "drilldat" "hbase" "hdfs" "hive" "kudu" "mongo" "my" "s3"drill_query(dc, "SELECT * FROM cp.`employee.json` limit 100")
## # A tibble: 100 x 16
## employee_id full_name first_name last_name position_id position_title store_id department_id birth_date hire_date
##
## 1 1 Sheri No… Sheri Nowmer 1 President 0 1 1961-08-26 1994-12-…
## 2 2 Derrick … Derrick Whelply 2 VP Country Ma… 0 1 1915-07-03 1994-12-…
## 3 4 Michael … Michael Spence 2 VP Country Ma… 0 1 1969-06-20 1998-01-…
## 4 5 Maya Gut… Maya Gutierrez 2 VP Country Ma… 0 1 1951-05-10 1998-01-…
## 5 6 Roberta … Roberta Damstra 3 VP Informatio… 0 2 1942-10-08 1994-12-…
## 6 7 Rebecca … Rebecca Kanagaki 4 VP Human Reso… 0 3 1949-03-27 1994-12-…
## 7 8 Kim Brun… Kim Brunner 11 Store Manager 9 11 1922-08-10 1998-01-…
## 8 9 Brenda B… Brenda Blumberg 11 Store Manager 21 11 1979-06-23 1998-01-…
## 9 10 Darren S… Darren Stanz 5 VP Finance 0 5 1949-08-26 1994-12-…
## 10 11 Jonathan… Jonathan Murraiin 11 Store Manager 1 11 1967-06-20 1998-01-…
## # … with 90 more rows, and 6 more variables: salary , supervisor_id , education_level ,
## # marital_status , gender , management_roledrill_query(dc, "SELECT COUNT(gender) AS gctFROM cp.`employee.json` GROUP BY gender")
drill_options(dc)
## # A tibble: 179 x 6
## name value defaultValue accessibleScopes kind optionScope
##
## 1 debug.validate_iterators FALSE false ALL BOOLE… BOOT
## 2 debug.validate_vectors FALSE false ALL BOOLE… BOOT
## 3 drill.exec.functions.cast_empty_string_to_null FALSE false ALL BOOLE… BOOT
## 4 drill.exec.hashagg.fallback.enabled FALSE false ALL BOOLE… BOOT
## 5 drill.exec.hashjoin.fallback.enabled FALSE false ALL BOOLE… BOOT
## 6 drill.exec.memory.operator.output_batch_size 16777216 16777216 SYSTEM LONG BOOT
## 7 drill.exec.memory.operator.output_batch_size_avail_mem_fac… 0.1 0.1 SYSTEM DOUBLE BOOT
## 8 drill.exec.storage.file.partition.column.label dir dir ALL STRING BOOT
## 9 drill.exec.storage.implicit.filename.column.label filename filename ALL STRING BOOT
## 10 drill.exec.storage.implicit.filepath.column.label filepath filepath ALL STRING BOOT
## # … with 169 more rowsdrill_options(dc, "json")
## # A tibble: 10 x 6
## name value defaultValue accessibleScopes kind optionScope
##
## 1 store.hive.maprdb_json.optimize_scan_with_native_reader FALSE false ALL BOOLEAN BOOT
## 2 store.json.all_text_mode TRUE false ALL BOOLEAN SYSTEM
## 3 store.json.extended_types TRUE false ALL BOOLEAN SYSTEM
## 4 store.json.read_numbers_as_double FALSE false ALL BOOLEAN BOOT
## 5 store.json.reader.allow_nan_inf TRUE true ALL BOOLEAN BOOT
## 6 store.json.reader.print_skipped_invalid_record_number TRUE false ALL BOOLEAN SYSTEM
## 7 store.json.reader.skip_invalid_records TRUE false ALL BOOLEAN SYSTEM
## 8 store.json.writer.allow_nan_inf TRUE true ALL BOOLEAN BOOT
## 9 store.json.writer.skip_null_fields TRUE true ALL BOOLEAN BOOT
## 10 store.json.writer.uglify TRUE false ALL BOOLEAN SYSTEM
```## Working with parquet files
``` r
drill_query(dc, "SELECT * FROM dfs.`/usr/local/drill/sample-data/nation.parquet` LIMIT 5")
## # A tibble: 5 x 4
## N_NATIONKEY N_NAME N_REGIONKEY N_COMMENT
##
## 1 0 ALGERIA 0 haggle. carefully f
## 2 1 ARGENTINA 1 al foxes promise sly
## 3 2 BRAZIL 1 y alongside of the p
## 4 3 CANADA 1 eas hang ironic, sil
## 5 4 EGYPT 4 y above the carefull
```Including multiple parquet files in different directories (note the
wildcard support):``` r
drill_query(dc, "SELECT * FROM dfs.`/usr/local/drill/sample-data/nations*/nations*.parquet` LIMIT 5")
## # A tibble: 5 x 5
## dir0 N_NATIONKEY N_NAME N_REGIONKEY N_COMMENT
##
## 1 nationsSF 0 ALGERIA 0 haggle. carefully f
## 2 nationsSF 1 ARGENTINA 1 al foxes promise sly
## 3 nationsSF 2 BRAZIL 1 y alongside of the p
## 4 nationsSF 3 CANADA 1 eas hang ironic, sil
## 5 nationsSF 4 EGYPT 4 y above the carefull
```### Drill has built-in support for spatial ops
Via:
A common use case is to select data within boundary of given polygon:
``` r
drill_query(dc, "
select columns[2] as city, columns[4] as lon, columns[3] as lat
from cp.`sample-data/CA-cities.csv`
where
ST_Within(
ST_Point(columns[4], columns[3]),
ST_GeomFromText(
'POLYGON((-121.95 37.28, -121.94 37.35, -121.84 37.35, -121.84 37.28, -121.95 37.28))'
)
)
")
## # A tibble: 7 x 3
## city lon lat
##
## 1 Burbank -121.9316233 37.3232752
## 2 San Jose -121.8949555 37.3393857
## 3 Lick -121.8457863 37.2871647
## 4 Willow Glen -121.8896771 37.3085532
## 5 Buena Vista -121.9166227 37.3213308
## 6 Parkmoor -121.9307898 37.3210531
## 7 Fruitdale -121.932746 37.31086
```### sergeant Metrics
| Lang | \# Files | (%) | LoC | (%) | Blank lines | (%) | \# Lines | (%) |
| :--- | -------: | --: | --: | --: | ----------: | --: | -------: | --: |
| Rmd | 1 | 1 | 55 | 1 | 54 | 1 | 89 | 1 |## Code of Conduct
Please note that this project is released with a Contributor Code of
Conduct By participating in this project you agree to
abide by its terms.