Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hrbrmstr/tdigest
Wicked Fast, Accurate Quantiles Using 't-Digests'
https://github.com/hrbrmstr/tdigest
quantile r rstats t-digest
Last synced: 4 months ago
JSON representation
Wicked Fast, Accurate Quantiles Using 't-Digests'
- Host: GitHub
- URL: https://github.com/hrbrmstr/tdigest
- Owner: hrbrmstr
- License: other
- Created: 2019-02-15T13:48:04.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2024-06-19T18:37:42.000Z (8 months ago)
- Last Synced: 2024-10-12T21:24:15.331Z (4 months ago)
- Topics: quantile, r, rstats, t-digest
- Language: C
- Homepage:
- Size: 384 KB
- Stars: 37
- Watchers: 5
- Forks: 8
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
- jimsghstars - hrbrmstr/tdigest - Wicked Fast, Accurate Quantiles Using 't-Digests' (C)
README
[](https://www.repostatus.org/#active)
[](https://keybase.io/hrbrmstr)
[](https://cranchecks.info/pkgs/tdigest)
[](https://www.r-pkg.org/pkg/tdigest)

# tdigest
Wicked Fast, Accurate Quantiles Using ‘t-Digests’
## Description
The t-Digest construction algorithm uses a variant of 1-dimensional
k-means clustering to produce a very compact data structure that allows
accurate estimation of quantiles. This t-Digest data structure can be
used to estimate quantiles, compute other rank statistics or even to
estimate related measures like trimmed means. The advantage of the
t-Digest over previous digests for this purpose is that the t-Digest
handles data with full floating point resolution. The accuracy of
quantile estimates produced by t-Digests can be orders of magnitude more
accurate than those produced by previous digest algorithms. Methods are
provided to create and update t-Digests and retrieve quantiles from the
accumulated distributions.See [the original paper by Ted Dunning & Otmar
Ertl](https://arxiv.org/abs/1902.04023) for more details on t-Digests.## What’s Inside The Tin
The following functions are implemented:
- `as.list.tdigest`: Serialize a tdigest object to an R list or
unserialize a serialized tdigest list back into a tdigest object
- `td_add`: Add a value to the t-Digest with the specified count
- `td_create`: Allocate a new histogram
- `td_merge`: Merge one t-Digest into another
- `td_quantile_of`: Return the quantile of the value
- `td_total_count`: Total items contained in the t-Digest
- `td_value_at`: Return the value at the specified quantile
- `tquantile`: Calculate sample quantiles from a t-Digest## Installation
``` r
install.packages("tdigest") # NOTE: CRAN version is 0.4.1
# or
remotes::install_gitlab("hrbrmstr/tdigest")
```NOTE: To use the ‘remotes’ install options you will need to have the
[{remotes} package](https://github.com/r-lib/remotes) installed.## Usage
``` r
library(tdigest)# current version
packageVersion("tdigest")
## [1] '0.4.2'
```### Basic (Low-level interface)
``` r
td <- td_create(10)td
##td_total_count(td)
## [1] 0td_add(td, 0, 1) %>%
td_add(10, 1)
##td_total_count(td)
## [1] 2td_value_at(td, 0.1) == 0
## [1] TRUE
td_value_at(td, 0.5) == 5
## [1] TRUEquantile(td)
## [1] 0 0 5 10 10
```#### Bigger (and Vectorised)
``` r
td <- tdigest(c(0, 10), 10)is_tdigest(td)
## [1] TRUEtd_value_at(td, 0.1) == 0
## [1] TRUE
td_value_at(td, 0.5) == 5
## [1] TRUEset.seed(1492)
x <- sample(0:100, 1000000, replace = TRUE)
td <- tdigest(x, 1000)td_total_count(td)
## [1] 1e+06tquantile(td, c(0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1))
## [1] 0.0000000 0.8099857 9.6725790 19.7533723 29.7448283 39.7544675 49.9966628 60.0235148 70.2067574
## [10] 80.3090454 90.2594642 99.4269454 100.0000000quantile(td)
## [1] 0.00000 24.74751 49.99666 75.24783 100.00000
```#### Serialization
These \[de\]serialization functions make it possible to create &
populate a tdigest, serialize it out, read it in at a later time and
continue populating it enabling compact distribution accumulation &
storage for large, “continuous” datasets.``` r
set.seed(1492)
x <- sample(0:100, 1000000, replace = TRUE)
td <- tdigest(x, 1000)tquantile(td, c(0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1))
## [1] 0.0000000 0.8099857 9.6725790 19.7533723 29.7448283 39.7544675 49.9966628 60.0235148 70.2067574
## [10] 80.3090454 90.2594642 99.4269454 100.0000000str(in_r <- as.list(td), 1)
## List of 7
## $ compression : num 1000
## $ cap : int 6010
## $ merged_nodes : int 226
## $ unmerged_nodes: int 0
## $ merged_count : num 1e+06
## $ unmerged_count: num 0
## $ nodes :List of 2
## - attr(*, "class")= chr [1:2] "tdigest_list" "list"td2 <- as_tdigest(in_r)
tquantile(td2, c(0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1))
## [1] 0.0000000 0.8099857 9.6725790 19.7533723 29.7448283 39.7544675 49.9966628 60.0235148 70.2067574
## [10] 80.3090454 90.2594642 99.4269454 100.0000000identical(in_r, as.list(td2))
## [1] TRUE
```#### ALTREP-aware
``` r
N <- 1000000
x.altrep <- seq_len(N) # this is an ALTREP in R version >= 3.5.0td <- tdigest(x.altrep)
td[0.1]
## [1] 93051
td[0.5]
## [1] 491472.5
length(td)
## [1] 1000000
```#### Proof it’s faster
``` r
microbenchmark::microbenchmark(
tdigest = tquantile(td, c(0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1)),
r_quantile = quantile(x, c(0, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, 1))
)
## Unit: microseconds
## expr min lq mean median uq max neval
## tdigest 3.198 3.731 7.79369 4.4895 12.792 16.4 100
## r_quantile 39197.353 39445.444 40069.38938 39584.8030 40062.945 43613.3 100
```## tdigest Metrics
| Lang | \# Files | (%) | LoC | (%) | Blank lines | (%) | \# Lines | (%) |
|:-------------|---------:|-----:|----:|-----:|------------:|-----:|---------:|-----:|
| C | 3 | 0.15 | 499 | 0.36 | 71 | 0.29 | 45 | 0.10 |
| R | 6 | 0.30 | 161 | 0.12 | 35 | 0.14 | 156 | 0.34 |
| C/C++ Header | 1 | 0.05 | 24 | 0.02 | 16 | 0.07 | 30 | 0.06 |
| SUM | 10 | 0.50 | 684 | 0.50 | 122 | 0.50 | 231 | 0.50 |{cloc} 📦 metrics for tdigest
## Code of Conduct
Please note that this project is released with a Contributor Code of
Conduct. By participating in this project you agree to abide by its
terms.