Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/hrnoh/f0-autovc

Pytorch implementation of "f0-consistent many-to-many non-parallel voice conversion via conditional autoencoder"
https://github.com/hrnoh/f0-autovc

Last synced: 3 days ago
JSON representation

Pytorch implementation of "f0-consistent many-to-many non-parallel voice conversion via conditional autoencoder"

Awesome Lists containing this project

README

        

## F0-AUTOVC: F0-Consistent Many-to-Many Non-Parallel Voice Conversion via Conditional Autoencoder
This repository provides a PyTorch implementation of the paper [F0-AUTOVC](https://arxiv.org/abs/2004.07370).

Based on
- https://github.com/auspicious3000/autovc
- https://github.com/auspicious3000/SpeechSplit
- https://github.com/christopher-beckham/amr

## Dependencies
- Python 3.7
- Pytorch 1.6.0
- TensorFlow
- Numpy
- librosa
- tqdm

## Usage
1. Prepare dataset

we used the [VCTK dataset](http://www.udialogue.org/download/cstr-vctk-corpus.html) as used in original paper.
But, you can use your own dataset.

2. Prepare the speaker to gender file as shown in nikl_spk.txt and run ```make_spk2gen.py```
* Format
speaker1 gender1
speaker2 gender2

* Example:
p225 W
p226 M
p301 W
p302 W
.
.

3. Preprocess data using ```preprocess.py```

4. Run ```task_launcher.py```