Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hrnoh/f0-autovc
Pytorch implementation of "f0-consistent many-to-many non-parallel voice conversion via conditional autoencoder"
https://github.com/hrnoh/f0-autovc
Last synced: 3 days ago
JSON representation
Pytorch implementation of "f0-consistent many-to-many non-parallel voice conversion via conditional autoencoder"
- Host: GitHub
- URL: https://github.com/hrnoh/f0-autovc
- Owner: hrnoh
- Created: 2020-10-13T11:30:15.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2020-11-06T08:49:15.000Z (about 4 years ago)
- Last Synced: 2024-08-02T13:28:27.951Z (3 months ago)
- Language: Python
- Size: 9.11 MB
- Stars: 28
- Watchers: 2
- Forks: 4
- Open Issues: 2
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- awesome-voice-conversion - [f0-autovc - WavRNN]](https://github.com/freenowill/AutoVC-WavRNN), [[AutoVC]](https://github.com/CODEJIN/AutoVC) (Overview / Voice Conversion)
README
## F0-AUTOVC: F0-Consistent Many-to-Many Non-Parallel Voice Conversion via Conditional Autoencoder
This repository provides a PyTorch implementation of the paper [F0-AUTOVC](https://arxiv.org/abs/2004.07370).Based on
- https://github.com/auspicious3000/autovc
- https://github.com/auspicious3000/SpeechSplit
- https://github.com/christopher-beckham/amr## Dependencies
- Python 3.7
- Pytorch 1.6.0
- TensorFlow
- Numpy
- librosa
- tqdm## Usage
1. Prepare dataset
we used the [VCTK dataset](http://www.udialogue.org/download/cstr-vctk-corpus.html) as used in original paper.
But, you can use your own dataset.
2. Prepare the speaker to gender file as shown in nikl_spk.txt and run ```make_spk2gen.py```
* Format
speaker1 gender1
speaker2 gender2
* Example:
p225 W
p226 M
p301 W
p302 W
.
.3. Preprocess data using ```preprocess.py```
4. Run ```task_launcher.py```