Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/huangcongqing/3d-point-clouds
🔥3D点云目标检测&语义分割(深度学习)-SOTA方法,代码,论文,数据集等
https://github.com/huangcongqing/3d-point-clouds
3d-detection 3d-point-cloud 3d-point-clouds 3d-semantic-segmentation cpp dataset deep-learning pcl point-cloud python3 ros ros-melodic sota
Last synced: 2 days ago
JSON representation
🔥3D点云目标检测&语义分割(深度学习)-SOTA方法,代码,论文,数据集等
- Host: GitHub
- URL: https://github.com/huangcongqing/3d-point-clouds
- Owner: HuangCongQing
- License: mit
- Created: 2021-01-15T09:38:03.000Z (about 4 years ago)
- Default Branch: main
- Last Pushed: 2024-06-20T10:05:13.000Z (7 months ago)
- Last Synced: 2025-01-11T23:09:34.050Z (9 days ago)
- Topics: 3d-detection, 3d-point-cloud, 3d-point-clouds, 3d-semantic-segmentation, cpp, dataset, deep-learning, pcl, point-cloud, python3, ros, ros-melodic, sota
- Language: Jupyter Notebook
- Homepage:
- Size: 1.25 MB
- Stars: 484
- Watchers: 8
- Forks: 76
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# 3D-Point-Clouds
3D点云SOTA方法,代码,论文,数据集(点云目标检测&分割)
* 如有疑问,微信:shuangyu_ai
* 更多自动驾驶相关交流群,欢迎扫码加入:[自动驾驶感知(PCL/ROS+DL):技术交流群汇总(新版)](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247486575&idx=1&sn=3145b7a5e9dda45595e1b51aa7e45171&chksm=ec2aa068db5d297efec6ba982d6a73d2170ef09a01130b7f44819b01de46b30f13644347dbf2#rd)应同学建议,创建了星球 **【自动驾驶感知(PCL/ROS+DL)】** 专注于自动驾驶感知领域,包括传统方法(PCL点云库,ROS)和深度学习(目标检测+语义分割)方法。同时涉及Apollo,Autoware(基于ros2),BEV感知,三维重建,SLAM(视觉+激光雷达) ,模型压缩(蒸馏+剪枝+量化等),自动驾驶模拟仿真,自动驾驶数据集标注&数据闭环等自动驾驶全栈技术,欢迎扫码二维码加入,一起登顶自动驾驶的高峰!
![image](https://github.com/HuangCongQing/HuangCongQing/assets/20675770/304e0c4d-89d2-4cee-a2a9-3c690611c9d9)
点云处理方法上主要包括两类方法
* 深度学习方法 [`python`]
* 目标检测&语义分割&多目标跟踪(MOT)
* [【202212done】目标检测最新论文实时更新](https://zhuanlan.zhihu.com/p/591349104)
* [【202304done】语义分割最新论文实时更新](https://zhuanlan.zhihu.com/p/591349481)
* 传统上基于规则的方法 [`c++`]
* PCL:https://github.com/HuangCongQing/pcl-learning
* ROS: https://github.com/HuangCongQing/ROS
* Apollo笔记:https://github.com/HuangCongQing/apollo_note@[双愚](https://github.com/HuangCongQing) , 若fork或star请注明来源
## TODO
- [x] [【202212done】目标检测最新论文实时更新](https://zhuanlan.zhihu.com/p/591349104)
- [x] [【202304done】语义分割最新论文实时更新](https://zhuanlan.zhihu.com/p/591349481)
- [x] [【202209done】目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)文章撰写](https://zhuanlan.zhihu.com/p/569189196?)
- [x] [【202208done】数据集调研总结](https://zhuanlan.zhihu.com/p/551861727)
- [x] [【202406done】3D语义分割框架综述(mmdetection3d|OpenPCSeg|Pointcept)](https://zhuanlan.zhihu.com/p/701605684?)
- [ ] 数据集详细剖析:kitti&waymo&nuScenes
- [ ] Apollo学习https://github.com/HuangCongQing/apollo_note## 目录
#### 0 目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)
> [【202209done】目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)文章撰写](https://zhuanlan.zhihu.com/p/569189196?)代码注解笔记:
1. **pcdet:https://github.com/HuangCongQing/pcdet-note**
2. **mmdetection3d:https://github.com/HuangCongQing/mmdetection3d-note**
3. det3d: TODO
4. paddle3d: TODO#### 1 paper(code)
* paperswithcode: https://paperswithcode.com/
#### 2 Datasets
**[自动驾驶相关数据集调研总结【附下载地址】(更新ing)](https://zhuanlan.zhihu.com/p/551861727)**
数据集基本处理: [数据集标注文件处理](https://github.com/HuangCongQing/Python#%E7%82%B9%E4%BA%91%E7%9B%B8%E5%85%B3%E5%A4%84%E7%90%86)
部分数据下载脚本:https://github.com/HuangCongQing/download_3D_dataset
#### 3 点云可视化
点云可视化笔记和代码:https://github.com/HuangCongQing/Point-Clouds-Visualization
3D点云可视化的库有很多,你的选择可能是:
- pcl 点云可视化 [`c++`]
- ROS topic可视化 [`c++`] [`python`]
- open3D [`python`]
- mayavi[`python`]
- matplolib [`python`]#### 4 点云数据标注
数据标注工具总结:https://github.com/HuangCongQing/data-labeling-tools## paper(code)
### 3D_Object_Detection
- [x] [**>>>目标检测最新论文实时更新**](https://zhuanlan.zhihu.com/p/591349104)* One-stage
* Two-stage#### One-stage
> Voxel-Net、SECOND、PointPillars、HVNet、DOPS、Point-GNN、SA-SSD、3D-VID、3DSSD
* Voxel-Net
* SECOND
* PointPillars
* HVNet
* DOPS
* Point-GNN
* SA-SSD
* 3D-VID
* 3DSSD#### Two-stage
> F-pointNet、F-ConvNet、Point-RCNN、Part-A^2、PV-RCNN、Fast Point RCNN、TANet
* F-pointNet
* F-ConvNet
* Point-RCNN
* Part-A^2
* PV-RCNN
* Fast Point RCNN
* TANet### 3D_Semantic_Segmentation
- [x] [**>>>语义分割最新论文实时更新**](https://zhuanlan.zhihu.com/p/591349481)
**PointNet** is proposed to learn per-point features using shared MLPs and global features using symmetrical pooling functions. Based on PointNet, a series of point-based networks have been proposed
>Point-based Methods: these methods can be roughly divided into pointwise MLP methods, point convolution methods, RNN-based methods, and graph-based methods
#### 1 pointwise MLP methods
> PointNet++,PointSIFT,PointWeb,ShellNet,RandLA-Net
PointNet++
PointSIFT
PointWeb
ShellNet
RandLA-Net#### 2 point convolution methods
> PointCNN PCCN A-CNN ConvPoint pointconv KPConv DPC InterpCNN
* PointCNN
* PCCN
* A-CNN
* ConvPoint
* pointconv
* KPConv
* DPC
* InterpCNN#### 3 RNN-based methods
> G+RCU RSNet 3P-RNN DAR-Net* G+RCU
* RSNet
* 3P-RNN
* DAR-Net#### 4 graph-based methods
> DGCNN SPG SSP+SPG PyramNet GACNet PAG HDGCN HPEIN SPH3D-GCN DPAM
* DGCNN
* SPG
* SSP+SPG
* PyramNet
* GACNet
* PAG
* HDGCN
* HPEIN
* SPH3D-GCN
* DPAM### 3D_Instance Segmentation
## Datasets
### 数据集下载
* **shell脚本下载方式: https://github.com/HuangCongQing/download_3D_dataset**
- [https://hyper.ai/datasets](https://hyper.ai/datasets)
- [https://www.graviti.cn/open-datasets](https://www.graviti.cn/open-datasets)> Graviti 收录了 400 多个高质量 CV 类数据集,覆盖无人驾驶、智慧零售、机器人等多种 AI 应用领域。举两个例子:
> 文章> [https://bbs.cvmart.net/topics/3346](https://bbs.cvmart.net/topics/3346)- Google数据集搜索:[https://toolbox.google.com/datasetsearch](https://toolbox.google.com/datasetsearch)
- Datahub,分享高质量数据集平台:[https://datahub.io/](https://datahub.io/)
- 用于上传和查找数据集的机器学习数据集存储库:[https://www.webdoctx.com/www.mldata.org](https://www.webdoctx.com/www.mldata.org)
- datafountain收集数据集:[https://www.datafountain.cn/dataSets](https://www.datafountain.cn/dataSets)
- tinymind收集数据集:[https://www.tinymind.cn/sites#group_22](https://www.tinymind.cn/sites#group_22) 看到的一篇文章,里面有介绍很多数据集的:[世界上最有价值的不是石油而是数据(附数据资源下载链接)](https://mp.weixin.qq.com/s/Ao8SO9j2IPurl45Noy1dVw)
- [https://www.graviti.cn/open-datasets](https://www.graviti.cn/open-datasets)## Datasets数据集汇总
[https://github.com/Yochengliu/awesome-point-cloud-analysis#---datasets](https://github.com/Yochengliu/awesome-point-cloud-analysis#---datasets)
- **[**[KITTI](http://www.cvlibs.net/datasets/kitti/)] The KITTI Vision Benchmark Suite. [`det.`]**常用
- [[ModelNet](http://modelnet.cs.princeton.edu/)] The Princeton ModelNet . [**`cls.`**]
- [[ShapeNet](https://www.shapenet.org/)] A collaborative dataset between researchers at Princeton, Stanford and TTIC. [**`seg.`**]
- [[PartNet](https://shapenet.org/download/parts)] The PartNet dataset provides fine grained part annotation of objects in ShapeNetCore. [**`seg.`**]
- [[PartNet](http://kevinkaixu.net/projects/partnet.html)] PartNet benchmark from Nanjing University and National University of Defense Technology. [**`seg.`**]
- **[**[**S3DIS**](http://buildingparser.stanford.edu/dataset.html#Download)**] The Stanford Large-Scale 3D Indoor Spaces Dataset. [`seg.`]**常用
- [[ScanNet](http://www.scan-net.org/)] Richly-annotated 3D Reconstructions of Indoor Scenes. [**`cls.`** **`seg.`**]
- [[Stanford 3D](https://graphics.stanford.edu/data/3Dscanrep/)] The Stanford 3D Scanning Repository. [**`reg.`**]
- [[UWA Dataset](http://staffhome.ecm.uwa.edu.au/~00053650/databases.html)] . [**`cls.`** **`seg.`** **`reg.`**]
- [[Princeton Shape Benchmark](http://shape.cs.princeton.edu/benchmark/)] The Princeton Shape Benchmark.
- [[SYDNEY URBAN OBJECTS DATASET](http://www.acfr.usyd.edu.au/papers/SydneyUrbanObjectsDataset.shtml)] This dataset contains a variety of common urban road objects scanned with a Velodyne HDL-64E LIDAR, collected in the CBD of Sydney, Australia. There are 631 individual scans of objects across classes of vehicles, pedestrians, signs and trees. [**`cls.`** **`match.`**]
- [[ASL Datasets Repository(ETH)](https://projects.asl.ethz.ch/datasets/doku.php?id=home)] This site is dedicated to provide datasets for the Robotics community with the aim to facilitate result evaluations and comparisons. [**`cls.`** **`match.`** **`reg.`** **`det`**]
- [[Large-Scale Point Cloud Classification Benchmark(ETH)](http://www.semantic3d.net/)] This benchmark closes the gap and provides a large labelled 3D point cloud data set of natural scenes with over 4 billion points in total. [**`cls.`**]
- [[Robotic 3D Scan Repository](http://asrl.utias.utoronto.ca/datasets/3dmap/)] The Canadian Planetary Emulation Terrain 3D Mapping Dataset is a collection of three-dimensional laser scans gathered at two unique planetary analogue rover test facilities in Canada.
- [[Radish](http://radish.sourceforge.net/)] The Robotics Data Set Repository (Radish for short) provides a collection of standard robotics data sets.
- [[IQmulus & TerraMobilita Contest](http://data.ign.fr/benchmarks/UrbanAnalysis/#)] The database contains 3D MLS data from a dense urban environment in Paris (France), composed of 300 million points. The acquisition was made in January 2013. [**`cls.`** **`seg.`** **`det.`**]
- [[Oakland 3-D Point Cloud Dataset](http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/)] This repository contains labeled 3-D point cloud laser data collected from a moving platform in a urban environment.
- [[Robotic 3D Scan Repository](http://kos.informatik.uni-osnabrueck.de/3Dscans/)] This repository provides 3D point clouds from robotic experiments,log files of robot runs and standard 3D data sets for the robotics community.
- [[Ford Campus Vision and Lidar Data Set](http://robots.engin.umich.edu/SoftwareData/Ford)] The dataset is collected by an autonomous ground vehicle testbed, based upon a modified Ford F-250 pickup truck.
- [[The Stanford Track Collection](https://cs.stanford.edu/people/teichman/stc/)] This dataset contains about 14,000 labeled tracks of objects as observed in natural street scenes by a Velodyne HDL-64E S2 LIDAR.
- [[PASCAL3D+](http://cvgl.stanford.edu/projects/pascal3d.html)] Beyond PASCAL: A Benchmark for 3D Object Detection in the Wild. [**`pos.`** **`det.`**]
- [[3D MNIST](https://www.kaggle.com/daavoo/3d-mnist)] The aim of this dataset is to provide a simple way to get started with 3D computer vision problems such as 3D shape recognition. [**`cls.`**]
- [[WAD](http://wad.ai/2019/challenge.html)] [[ApolloScape](http://apolloscape.auto/tracking.html)] The datasets are provided by Baidu Inc. [**`tra.`** **`seg.`** **`det.`**]
- [[nuScenes](https://d3u7q4379vrm7e.cloudfront.net/object-detection)] The nuScenes dataset is a large-scale autonomous driving dataset.用过
- [[PreSIL](https://uwaterloo.ca/waterloo-intelligent-systems-engineering-lab/projects/precise-synthetic-image-and-lidar-presil-dataset-autonomous)] Depth information, semantic segmentation (images), point-wise segmentation (point clouds), ground point labels (point clouds), and detailed annotations for all vehicles and people. [[paper](https://arxiv.org/abs/1905.00160)] [**`det.`** **`aut.`**]
- [[3D Match](http://3dmatch.cs.princeton.edu/)] Keypoint Matching Benchmark, Geometric Registration Benchmark, RGB-D Reconstruction Datasets. [**`reg.`** **`rec.`** **`oth.`**]
- [[BLVD](https://github.com/VCCIV/BLVD)] (a) 3D detection, (b) 4D tracking, (c) 5D interactive event recognition and (d) 5D intention prediction. [[ICRA 2019 paper](https://arxiv.org/abs/1903.06405v1)] [**`det.`** **`tra.`** **`aut.`** **`oth.`**]
- [[PedX](https://arxiv.org/abs/1809.03605)] 3D Pose Estimation of Pedestrians, more than 5,000 pairs of high-resolution (12MP) stereo images and LiDAR data along with providing 2D and 3D labels of pedestrians. [[ICRA 2019 paper](https://arxiv.org/abs/1809.03605)] [**`pos.`** **`aut.`**]
- [[H3D](https://usa.honda-ri.com/H3D)] Full-surround 3D multi-object detection and tracking dataset. [[ICRA 2019 paper](https://arxiv.org/abs/1903.01568)] [**`det.`** **`tra.`** **`aut.`**]
- [[Argoverse BY ARGO AI]](https://www.argoverse.org/) Two public datasets (3D Tracking and Motion Forecasting) supported by highly detailed maps to test, experiment, and teach self-driving vehicles how to understand the world around them.[[CVPR 2019 paper](http://openaccess.thecvf.com/content_CVPR_2019/html/Chang_Argoverse_3D_Tracking_and_Forecasting_With_Rich_Maps_CVPR_2019_paper.html)][**`tra.`** **`aut.`**]
- [[Matterport3D](https://niessner.github.io/Matterport/)] RGB-D: 10,800 panoramic views from 194,400 RGB-D images. Annotations: surface reconstructions, camera poses, and 2D and 3D semantic segmentations. Keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and scene classification. [[3DV 2017 paper](https://arxiv.org/abs/1709.06158)] [[code](https://github.com/niessner/Matterport)] [[blog](https://matterport.com/blog/2017/09/20/announcing-matterport3d-research-dataset/)]
- [[SynthCity](https://arxiv.org/abs/1907.04758)] SynthCity is a 367.9M point synthetic full colour Mobile Laser Scanning point cloud. Nine categories. [**`seg.`** **`aut.`**]
- [[Lyft Level 5](https://level5.lyft.com/dataset/?source=post_page)] Include high quality, human-labelled 3D bounding boxes of traffic agents, an underlying HD spatial semantic map. [**`det.`** **`seg.`** **`aut.`**]
- **[**[**SemanticKITTI**](http://semantic-kitti.org/)**] Sequential Semantic Segmentation, 28 classes, for autonomous driving. All sequences of KITTI odometry labeled. [**[**ICCV 2019 paper**](https://arxiv.org/abs/1904.01416)**] [`seg.` `oth.` `aut.`]**常用
- [[NPM3D](http://npm3d.fr/paris-lille-3d)] The Paris-Lille-3D has been produced by a Mobile Laser System (MLS) in two different cities in France (Paris and Lille). [**`seg.`**]
- [[The Waymo Open Dataset](https://waymo.com/open/)] The Waymo Open Dataset is comprised of high resolution sensor data collected by Waymo self-driving cars in a wide variety of conditions. [**`det.`**]
- [[A*3D: An Autonomous Driving Dataset in Challeging Environments](https://github.com/I2RDL2/ASTAR-3D)] A*3D: An Autonomous Driving Dataset in Challeging Environments. [**`det.`**]
- [[PointDA-10 Dataset](https://github.com/canqin001/PointDAN)] Domain Adaptation for point clouds.
- [[Oxford Robotcar](https://robotcar-dataset.robots.ox.ac.uk/)] The dataset captures many different combinations of weather, traffic and pedestrians. [**`cls.`** **`det.`** **`rec.`**]### 常用分割数据集
- **[**[**S3DIS**](http://buildingparser.stanford.edu/dataset.html#Download)**] The Stanford Large-Scale 3D Indoor Spaces Dataset. [`seg.`] [`常用`]
- **[**[**SemanticKITTI**](http://semantic-kitti.org/)**] Sequential Semantic Segmentation, 28 classes, for autonomous driving. All sequences of KITTI odometry labeled. [**[**ICCV 2019 paper**](https://arxiv.org/abs/1904.01416)**] [`seg.` `oth.` `aut.`] [`常用`]
- **Semantic3d**### 常用分类数据集
todo
### 常用目标检测数据集
- **[**[KITTI](http://www.cvlibs.net/datasets/kitti/)] The KITTI Vision Benchmark Suite. [`det.`]**常用
- [[nuScenes](https://d3u7q4379vrm7e.cloudfront.net/object-detection)] The nuScenes dataset is a large-scale autonomous driving dataset.用过
- [[The Waymo Open Dataset](https://waymo.com/open/)] The Waymo Open Dataset is comprised of high resolution sensor data collected by Waymo self-driving cars in a wide variety of conditions. [**`det.`**]## References
* https://github.com/timzhang642/3D-Machine-Learning
* https://github.com/victorphd/autonomous-vahicles-learning-resource
* https://github.com/Yochengliu/awesome-point-cloud-analysis
* https://github.com/NUAAXQ/awesome-point-cloud-analysis-2021
* https://github.com/QingyongHu/SoTA-Point-Cloud
* https://arxiv.org/abs/1912.12033 : Deep Learning for 3D Point Clouds: A Survey
* https://github.com/zhulf0804/3D-PointCloud## License
Copyright (c) [双愚](https://github.com/HuangCongQing). All rights reserved.
Licensed under the [MIT](./LICENSE) License.
---
微信公众号:**【双愚】**(huang_chongqing) 聊科研技术,谈人生思考,欢迎关注~
![image](https://user-images.githubusercontent.com/20675770/169835565-08fc9a49-573e-478a-84fc-d9b7c5fa27ff.png)
**往期推荐:**
1. [本文不提供职业建议,却能助你一生](https://mp.weixin.qq.com/s/rBR62qoAEeT56gGYTA0law)
2. [聊聊我们大学生面试](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247484016&idx=1&sn=08bc46266e00572e46f3e5d9ffb7c612&chksm=ec2aae77db5d276150cde1cb1dc6a53e03eba024adfbd1b22a048a7320c2b6872fb9dfef32aa&scene=178&cur_album_id=2253272068899471368#rd)
3. [清华大学刘知远:好的研究方法从哪来](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247486340&idx=1&sn=6c5f69bb37d91a343b1a1e7f6929ddae&chksm=ec2aa783db5d2e95ba4c472471267721cafafbe10c298a6d5fae9fed295f455a72f783872249&scene=178&cur_album_id=1855544495514140673#rd)本人创建星球 **【自动驾驶感知(PCL/ROS+DL)】** 专注于自动驾驶感知领域,包括传统方法(PCL点云库,ROS)和深度学习(目标检测+语义分割)方法。同时涉及Apollo,Autoware(基于ros2),BEV感知,三维重建,SLAM(视觉+激光雷达) ,模型压缩(蒸馏+剪枝+量化等),自动驾驶模拟仿真,自动驾驶数据集标注&数据闭环等自动驾驶全栈技术,欢迎扫码二维码加入,一起登顶自动驾驶的高峰!
![image](https://github.com/HuangCongQing/HuangCongQing/assets/20675770/304e0c4d-89d2-4cee-a2a9-3c690611c9d9)