Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/huangcongqing/mmdetection3d-note

mmdetection3d 代码重点注解笔记
https://github.com/huangcongqing/mmdetection3d-note

3d-object-detection object-detection object-detection-model point-cloud pytorch

Last synced: about 1 month ago
JSON representation

mmdetection3d 代码重点注解笔记

Awesome Lists containing this project

README

        

## Note笔记
**Based on version [mmdetection3d-0.17.1](https://github.com/open-mmlab/mmdetection3d/tree/v0.17.1)(环境配置好之后可运行).**
* **【202212】[mmdet3d-0.17版本环境配置(CUDA 11.x + torch1.10.1)](https://www.yuque.com/huangzhongqing/hre6tf/cqhuv1y0hhuibi2u?singleDoc# )**
* TODO:version [mmdetection3d-1.1](https://github.com/open-mmlab/mmdetection3d/tree/1.1).

**TODO:**

- [x] [【202212done】目标检测最新论文实时更新](https://zhuanlan.zhihu.com/p/591349104)
- [x] [2024语义分割最新论文实时更新](https://zhuanlan.zhihu.com/p/591349481)
- [x] [【202209done】目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)文章撰写](https://zhuanlan.zhihu.com/p/569189196?)
- [x] [【202406done】3D语义分割框架综述(mmdetection3d|OpenPCSeg|Pointcept)](https://zhuanlan.zhihu.com/p/701605684?)
- [ ] 数据集详细剖析:kitti&waymo&nuScenes
- [ ] Apollo学习https://github.com/HuangCongQing/apollo_note

Documentation: https://mmdetection3d.readthedocs.io/

学习文档:https://www.yuque.com/huangzhongqing/hre6tf/nnioxg

代码注解

* 模型配置注释:
* 配置示例1:votenet.py示例代码(base_/models/):[votenet.py](configs/_base_/models/votenet.py)
* 配置示例2:pointpillars.py:[configs/_base_/models/hv_pointpillars_secfpn_ouster.py](configs/_base_/models/hv_pointpillars_secfpn_ouster.py)

* 数据集配置注释:[configs/_base_/datasets/kitti-3d-3class.py](configs/_base_/datasets/kitti-3d-3class.py)

* kitti评测详细介绍(可适配自己的数据集评测):[eval.py](mmdet3d/core/evaluation/kitti_utils/eval_ouster.py)

* [...]()

**其他目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)代码注解笔记:**

1. pcdet:https://github.com/HuangCongQing/pcdet-note
2. mmdetection3d:https://github.com/HuangCongQing/mmdetection3d-note
3. det3d: TODO
4. paddle3dL TODO

* 【202209】 [目标检测框架(pcdet+mmdetection3d+det3d+paddle3d)文章撰写](https://zhuanlan.zhihu.com/p/569189196)

创建一个知识星球 **【自动驾驶感知(PCL/ROS+DL)】** 专注于自动驾驶感知领域,包括传统方法(PCL点云库,ROS)和深度学习(目标检测+语义分割)方法。同时涉及Apollo,Autoware(基于ros2),BEV感知,三维重建,SLAM(视觉+激光雷达) ,模型压缩(蒸馏+剪枝+量化等),自动驾驶模拟仿真,自动驾驶数据集标注&数据闭环等自动驾驶全栈技术,欢迎扫码二维码加入,一起登顶自动驾驶的高峰!
![image](https://github.com/HuangCongQing/HuangCongQing/assets/20675770/304e0c4d-89d2-4cee-a2a9-3c690611c9d9)

---



[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)

**News**: We released the codebase v0.17.0.

In the [nuScenes 3D detection challenge](https://www.nuscenes.org/object-detection?externalData=all&mapData=all&modalities=Any) of the 5th AI Driving Olympics in NeurIPS 2020, we obtained the best PKL award and the second runner-up by multi-modality entry, and the best vision-only results.

Code and models for the best vision-only method, [FCOS3D](https://arxiv.org/abs/2104.10956), have been released. Please stay tuned for [MoCa](https://arxiv.org/abs/2012.12741).

## Introduction

English | [简体中文](README_zh-CN.md)

The master branch works with **PyTorch 1.3+**.

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).

![demo image](resources/mmdet3d_outdoor_demo.gif)

### Major features

- **Support multi-modality/single-modality detectors out of box**

It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.

- **Support indoor/outdoor 3D detection out of box**

It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI.
For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/master/configs/nuimages).

- **Natural integration with 2D detection**

All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.

- **High efficiency**

It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `×`.

| Methods | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) |[votenet](https://github.com/facebookresearch/votenet)| [Det3D](https://github.com/poodarchu/Det3D) |
|:-------:|:-------------:|:---------:|:-----:|:-----:|
| VoteNet | 358 | × | 77 | × |
| PointPillars-car| 141 | × | × | 140 |
| PointPillars-3class| 107 |44 | × | × |
| SECOND| 40 |30 | × | × |
| Part-A2| 17 |14 | × | × |

Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Changelog

v0.17.0 was released in 1/9/2021.
Please refer to [changelog.md](docs/changelog.md) for details and release history.

## Benchmark and model zoo

Supported methods and backbones are shown in the below table.
Results and models are available in the [model zoo](docs/model_zoo.md).

Support backbones:

- [x] PointNet (CVPR'2017)
- [x] PointNet++ (NeurIPS'2017)
- [x] RegNet (CVPR'2020)

Support methods

- [x] [SECOND (Sensor'2018)](configs/second/README.md)
- [x] [PointPillars (CVPR'2019)](configs/pointpillars/README.md)
- [x] [FreeAnchor (NeurIPS'2019)](configs/free_anchor/README.md)
- [x] [VoteNet (ICCV'2019)](configs/votenet/README.md)
- [x] [H3DNet (ECCV'2020)](configs/h3dnet/README.md)
- [x] [3DSSD (CVPR'2020)](configs/3dssd/README.md)
- [x] [Part-A2 (TPAMI'2020)](configs/parta2/README.md)
- [x] [MVXNet (ICRA'2019)](configs/mvxnet/README.md)
- [x] [CenterPoint (CVPR'2021)](configs/centerpoint/README.md)
- [x] [SSN (ECCV'2020)](configs/ssn/README.md)
- [x] [ImVoteNet (CVPR'2020)](configs/imvotenet/README.md)
- [x] [FCOS3D (Arxiv'2021)](configs/fcos3d/README.md)
- [x] [PointNet++ (NeurIPS'2017)](configs/pointnet2/README.md)
- [x] [Group-Free-3D (Arxiv'2021)](configs/groupfree3d/README.md)
- [x] [ImVoxelNet (Arxiv'2021)](configs/imvoxelnet/README.md)
- [x] [PAConv (CVPR'2021)](configs/paconv/README.md)

| | ResNet | ResNeXt | SENet |PointNet++ | HRNet | RegNetX | Res2Net |
|--------------------|:--------:|:--------:|:--------:|:---------:|:-----:|:--------:|:-----:|
| SECOND | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| PointPillars | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| FreeAnchor | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| VoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| H3DNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| 3DSSD | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| Part-A2 | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| MVXNet | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| CenterPoint | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| SSN | ☐ | ☐ | ☐ | ✗ | ☐ | ✓ | ☐ |
| ImVoteNet | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| FCOS3D | ✓ | ☐ | ☐ | ✗ | ☐ | ☐ | ☐ |
| PointNet++ | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| Group-Free-3D | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |
| ImVoxelNet | ✓ | ✗ | ✗ | ✗ | ✗ | ✗ | ✗ |
| PAConv | ✗ | ✗ | ✗ | ✓ | ✗ | ✗ | ✗ |

Other features
- [x] [Dynamic Voxelization](configs/dynamic_voxelization/README.md)

**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/master/docs/model_zoo.md) can be trained or used in this codebase.

## Installation

Please refer to [getting_started.md](docs/getting_started.md) for installation.

## Get Started

Please see [getting_started.md](docs/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/1_exist_data_model.md) and [with customized dataset](docs/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/tutorials/config.md), [adding new dataset](docs/tutorials/customize_dataset.md), [designing data pipeline](docs/tutorials/data_pipeline.md), [customizing models](docs/tutorials/customize_models.md), [customizing runtime settings](docs/tutorials/customize_runtime.md) and [Waymo dataset](docs/datasets/waymo_det.md).

Please refer to [FAQ](docs/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/compatibility.md) to be aware of the BC-breaking updates introduced in each version.

## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
author={MMDetection3D Contributors},
howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
year={2020}
}
```

## Contributing

We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.

## Acknowledgement

MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks.
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.

## Projects in OpenMMLab

- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
- [MIM](https://github.com/open-mmlab/mim): MIM Installs OpenMMLab Packages.
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab next-generation platform for general 3D object detection.
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition and understanding toolbox.
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.