https://github.com/huangcongqing/model-compression-optimization
model compression and optimization for deployment for Pytorch, including knowledge distillation, quantization and pruning.(知识蒸馏,量化,剪枝)
https://github.com/huangcongqing/model-compression-optimization
knowledge-distillation model-compression nas pruning pytorch quantization quantized-networks sparsity sparsity-optimization
Last synced: 9 months ago
JSON representation
model compression and optimization for deployment for Pytorch, including knowledge distillation, quantization and pruning.(知识蒸馏,量化,剪枝)
- Host: GitHub
- URL: https://github.com/huangcongqing/model-compression-optimization
- Owner: HuangCongQing
- License: mit
- Created: 2022-10-15T17:50:03.000Z (over 3 years ago)
- Default Branch: main
- Last Pushed: 2024-09-10T12:05:19.000Z (over 1 year ago)
- Last Synced: 2025-03-31T00:03:27.475Z (11 months ago)
- Topics: knowledge-distillation, model-compression, nas, pruning, pytorch, quantization, quantized-networks, sparsity, sparsity-optimization
- Language: Python
- Homepage:
- Size: 20 MB
- Stars: 18
- Watchers: 2
- Forks: 2
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# model-compression-optimization
model compression and optimization for deployment for Pytorch, including knowledge distillation, quantization and pruning.(知识蒸馏,量化,剪枝)
## 1 Pruning(剪枝)
#### 算法总表
| **Pruning Method** | **Code location** | **Docs** | **Remark** |
| --- | --- | --- | --- |
| **01开山之作:Learning Efficient Convolutional Networks Through Network Slimming (ICCV2017)** | code: [pruning/01NetworkSlimming](pruning/01NetworkSlimming)
code reference:
[link1]( https://github.com/foolwood/pytorch-slimming)
[link2](https://github.com/Eric-mingjie/network-slimming)| [docs](https://www.yuque.com/huangzhongqing/pytorch/iar4s1) | placeholder |
| **02【ICCV2017】ThiNet** | code: [1pruning/02ThiNet](1pruning/02ThiNet)
code reference:
https://github.com/SSriven/ThiNet | [docs](https://www.yuque.com/huangzhongqing/lightweight/pnzhr3tb8wfdciep#Kownj) | 1 |
| **03【CVPR2020】HRank** | code: [1pruning/03HRank](1pruning/03HRank)
code reference:
[link](https://github.com/lmbxmu/HRank) | [docs](https://www.yuque.com/huangzhongqing/lightweight/xqks1lrte52moirq#dRSJK) | placeholder |
| **Coming...** | 1 | 1 | 1 |
#### 01 Learning Efficient Convolutional Networks Through Network Slimming (ICCV2017)
docs: https://www.yuque.com/huangzhongqing/pytorch/iar4s1
code: [pruning/01NetworkSlimming](pruning/01NetworkSlimming)
code reference:
>* https://github.com/foolwood/pytorch-slimming
● support for Vgg
>* https://github.com/Eric-mingjie/network-slimming
● We also add support for ResNet and DenseNet.
#### 02 TODO
## 2 quantization(量化)
#### 01 TODO
#### 算法总表
| **量化 Method** | **Code location** | **Docs** | **Remark** |
| --- | --- | --- | --- |
| **Coming...** | 1 | 1 | 1 |
## 3 knowledge distillation(知识蒸馏)
#### 算法总表
| **KD Method** | **Code location** | **Docs** | **Remark** |
| --- | --- | --- | --- |
| **01开山之作: Distilling the knowledge in a neural network(NIPS2014)ndom** | code: [3distillation/01Distilling the knowledge in a neural network](3distillation/01Distilling_the_knowledge_in_a_neural_network)
code reference: https://github.com/Eli-yu-first/Artificial_Intelligence | https://www.yuque.com/huangzhongqing/lightweight/lno6i7 | 1 |
| **02 Channel-wise Knowledge Distillation for Dense Prediction(ICCV2021)** | code: [3distillation/02SemSeg-distill](3distillation/02SemSeg-distill)
code reference: https://github.com/irfanICMLL/TorchDistiller/tree/main/SemSeg-distill | https://www.yuque.com/huangzhongqing/lightweight/dourdf2ogh9y1cx9#VHZBv | 1 |
| **Coming...** | 1 | 1 | 1 |
#### 01开山之作: Distilling the knowledge in a neural network(NIPS2014)
docs: https://www.yuque.com/huangzhongqing/lightweight/lno6i7
code: [3distillation/01Distilling the knowledge in a neural network](3distillation/01Distilling_the_knowledge_in_a_neural_network)
code reference: https://github.com/Eli-yu-first/Artificial_Intelligence
#### 02 Channel-wise Knowledge Distillation for Dense Prediction(ICCV2021)
docs: https://www.yuque.com/huangzhongqing/lightweight/dourdf2ogh9y1cx9#VHZBv
code: [3distillation/02SemSeg-distill](3distillation/02SemSeg-distill)
code reference: https://github.com/irfanICMLL/TorchDistiller/tree/main/SemSeg-distill
## 4 NAS神经网络搜索(Neural Architecture Search,简称NAS)
video:
* 神经网络结构搜索 Neural Architecture Search 系列:https://space.bilibili.com/1369507485/channel/collectiondetail?sid=788500
* PPT: [4NAS/NAS基础.pptx](4NAS/NAS基础.pptx)
#### 算法总表
| **NAS Method** | **Code location** | **Docs** | **Remark** |
| --- | --- | --- | --- |
| **01 DARTS(ICLR'2019)【Differentiable Neural Architecture Search 可微分结构】—年轻人的第一个NAS模型** | code: [4NAS/01DARTS(ICLR2019)/pt.darts](4NAS/01DARTS(ICLR2019)/pt.darts)
code reference:
https://github.com/khanrc/pt.darts | hthttps://www.yuque.com/huangzhongqing/lightweight/esyutcdebpmowgi3 | video:【论文解读】Darts可微分神经网络架构搜索算法:https://www.bilibili.com/video/BV1Mm4y1R7Cw/?vd_source=617461d43c4542e4c5a3ed54434a0e55 |
| **Coming...** | 1 | 1 | 1 |
#### 01 DARTS(ICLR'2019)【Differentiable Neural Architecture Search 可微分结构】—年轻人的第一个NAS模型
doc:https://www.yuque.com/huangzhongqing/lightweight/esyutcdebpmowgi3
code: [4NAS/01DARTS(ICLR2019)/pt.darts](4NAS/01DARTS(ICLR2019)/pt.darts)
code reference::https://github.com/khanrc/pt.darts
video:【论文解读】Darts可微分神经网络架构搜索算法:https://www.bilibili.com/video/BV1Mm4y1R7Cw/?vd_source=617461d43c4542e4c5a3ed54434a0e55
#### 02 TODO
## TODOlist
## License
Copyright (c) [双愚](https://github.com/HuangCongQing). All rights reserved.
Licensed under the [MIT](./LICENSE) License.
---
微信公众号:**【双愚】**(huang_chongqing) 聊科研技术,谈人生思考,欢迎关注~

**往期推荐:**
1. [本文不提供职业建议,却能助你一生](https://mp.weixin.qq.com/s/rBR62qoAEeT56gGYTA0law)
2. [聊聊我们大学生面试](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247484016&idx=1&sn=08bc46266e00572e46f3e5d9ffb7c612&chksm=ec2aae77db5d276150cde1cb1dc6a53e03eba024adfbd1b22a048a7320c2b6872fb9dfef32aa&scene=178&cur_album_id=2253272068899471368#rd)
3. [清华大学刘知远:好的研究方法从哪来](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247486340&idx=1&sn=6c5f69bb37d91a343b1a1e7f6929ddae&chksm=ec2aa783db5d2e95ba4c472471267721cafafbe10c298a6d5fae9fed295f455a72f783872249&scene=178&cur_album_id=1855544495514140673#rd)