An open API service indexing awesome lists of open source software.

https://github.com/huangcongqing/pcl-learning

🔥PCL(Point Cloud Library)点云库学习记录
https://github.com/huangcongqing/pcl-learning

3d-detection 3d-reconstruction 3d-representation 3d-segmentation pcl pcl-library pcl-viewer ros self-driving-car

Last synced: 3 days ago
JSON representation

🔥PCL(Point Cloud Library)点云库学习记录

Awesome Lists containing this project

README

          

# pcl
![](https://img.shields.io/badge/pcl-learning-v0.1-brightgreen)
![](https://img.shields.io/badge/pcl->=v1.9-red)

[![GitHub stars](https://img.shields.io/github/stars/HuangCongQing/pcl-learning.svg?style=social&label=Stars)](https://github.com/murufeng/awesome_lightweight_networks)
[![GitHub forks](https://img.shields.io/github/forks/HuangCongQing/pcl-learning.svg?style=social&label=Forks)](https://github.com/murufeng/awesome_lightweight_networks)
![visitors](https://visitor-badge.glitch.me/badge?page_id=HuangCongQing/pcl-learning)

PCL(Point Cloud Library)点云库 **个人开发环境:Ubuntu18.04**
* 如有疑问,微信:shuangyu_ai
* **Plus: _可承接点云处理相关项目,欢迎私聊_**
* **PCL微信交流群二维码每周都更新一次,请关注公众号【双愚】后台回复PCL加群**
* 更多自动驾驶相关交流群,欢迎扫码加入:[自动驾驶感知(PCL/ROS+DL):技术交流群汇总(新版)](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247486575&idx=1&sn=3145b7a5e9dda45595e1b51aa7e45171&chksm=ec2aa068db5d297efec6ba982d6a73d2170ef09a01130b7f44819b01de46b30f13644347dbf2#rd)

* [**【本仓库测试pcd数据】**](./data)

**墙裂建议先看下:[PCL(Point Cloud Library)学习指南&资料推荐](https://zhuanlan.zhihu.com/p/268524083)**

**PCL学习入门指南&代码实践(最新版)入门视频: https://www.bilibili.com/video/BV1HS4y1y7AB**

**代码对应系列笔记:[PCL(Point Cloud Library)学习记录(最新)](https://www.yuque.com/huangzhongqing/pcl)**

微信交流群二维码

**相关项目实战:**

* 3D-MOT(多目标检测和追踪):
[https://github.com/HuangCongQing/3D-LIDAR-Multi-Object-Tracking/tree/kitti](https://github.com/HuangCongQing/3D-LIDAR-Multi-Object-Tracking/tree/kitti)
* 需要学习ROS:https://github.com/HuangCongQing/ROS

@[双愚](https://github.com/HuangCongQing/pcl-learning) , 若fork或star请注明来源

> * 点云数据的处理可以采用获得广泛应用的Point Cloud Library (点云库,PCL库)。
> * PCL库是一个最初发布于2013年的开源C++库。它实现了大量点云相关的通用算法和高效的数据管理。
> * 支持多种操作系统平台,可在Windows、Linux、Android、Mac OS X、部分嵌入式实时系统上运行。如果说OpenCV是2D信息获取与处理的技术结晶,那么PCL在3D信息获取与处理上,就与OpenCV具有同等地位
> * PCL是BSD授权方式,可以免费进行商业和学术应用。

* 英文官网:https://pcl.readthedocs.io/projects/tutorials/en/latest/#
* https://pointclouds.org/
* GitHub:https://github.com/PointCloudLibrary/pcl
* 学习基于pcl1.9.1:https://github.com/PointCloudLibrary/pcl/tree/pcl-1.9.1

**Tips:**

* ubuntu下使用PCL,需要写**CMakeLists.txt**文件,然后编译才可以生成可执行文件.
* 可执行文件在build文件夹下,所以运行可执行文件时,后面添加参数的pcd文件,应放在build文件夹下才能获取到。**(注意文件路径)**
* `make -j ` (-j 自动多线程, -j4 四线程)

## 目录contents

> ***建议必学**

* [**【本仓库测试pcd数据】**](./data)

* [00base](00base)

##### step1(must)

* [* 08 io 输入输出](08IO输入输出) [[doc](https://www.yuque.com/huangzhongqing/pcl/mt2yo5)]
* [* 09 filters 滤波](09filters滤波) [[doc](https://www.yuque.com/huangzhongqing/pcl/ai96k5)]
* [* 10 features 特征](10features特征) [[doc](https://www.yuque.com/huangzhongqing/pcl/kf9kmf)]

##### step2

* [* 02kdtree k维tree](02kdtree) [[doc](https://www.yuque.com/huangzhongqing/pcl/uffamg#w9i1y)]
* [* 03octree 八叉树](03octree) [[doc](https://www.yuque.com/huangzhongqing/pcl/habl9h)]
* [* 04search](04search): [[doc](https://www.yuque.com/huangzhongqing/pcl/qs4wx2)]
* [05sample consensus 抽样一致性模块](05sampleconsensus抽样一致性模块) [[doc](https://www.yuque.com/huangzhongqing/pcl/ivtxgx)]
* [06range-images深度图像](06range-images深度图像) [[doc](https://www.yuque.com/huangzhongqing/pcl/hxeyrz)]

##### step3(根据个人需要)

* [11 surface表面 ](11surface表面) [[doc](https://www.yuque.com/huangzhongqing/pcl/yfrd0w)]
* [12 segmentation分割](12segmentation分割) [[doc](https://www.yuque.com/huangzhongqing/pcl/kg7wvi)]
* [13 recognition识别](13recognition识别) [[doc](https://www.yuque.com/huangzhongqing/pcl/hpgc39)]
* [14 registration配准](14registration配准) [[doc](https://www.yuque.com/huangzhongqing/pcl/zg7alz)]
* [* 15 visualization可视化](15visualization可视化) [[doc](https://www.yuque.com/huangzhongqing/pcl/rmexll)]
* [16 keypoints关键点](16keypoints关键点) [[doc](https://www.yuque.com/huangzhongqing/pcl/twi0mt)]
* [07tracking跟踪](07tracking跟踪/tracking.md) [[doc](https://www.yuque.com/huangzhongqing/pcl/em72xa)]

## 编译过程

```shell
mkdir build
cd build
cmake .. // 对上一级进行编译
make // 生成可执行文件
./executedemo // 运行可执行文件
```

## 实战项目

不理解的地方,欢迎提issue: https://github.com/HuangCongQing/pcl-learning/issues

* 3D-MOT(多目标检测和追踪)
* https://github.com/HuangCongQing/3D-LIDAR-Multi-Object-Tracking/tree/kitti
* 3D点云目标检测&语义分割-SOTA方法,代码,论文,数据集等
* https://github.com/HuangCongQing/3D-Point-Clouds

## 相关链接

* 公众号:点云PCL
* https://github.com/Yochengliu/awesome-point-cloud-analysis
* https://github.com/QingyongHu/SoTA-Point-Cloud
* https://github.com/PointCloudLibrary/pcl
* 参考书籍:点云库PCL学习教程,朱德海,北京航空航天大学出版社
* Plus:ROS学习-https://github.com/HuangCongQing/ROS

**入门资料:**
- **PCL学习入门指南&代码实践(最新版)入门视频: https://www.bilibili.com/video/BV1HS4y1y7AB**
- **视频**:[bilibili-PCL点云库官网教程](https://space.bilibili.com/504859351/channel/detail?cid=130387)
- **点云库PCL学习教程书籍每章总结:**[https://github.com/MNewBie/PCL-Notes](https://github.com/MNewBie/PCL-Notes)
- 百度网盘资料:

链接:[https://pan.baidu.com/s/1ziq8s_kj5QpM8eXO_d6RJg](https://pan.baidu.com/s/1ziq8s_kj5QpM8eXO_d6RJg)
提取码:g6ny

**代码实践资料:**

- 官方各模块示例(和对应的对象函数对照着看)【英文】:[https://pcl.readthedocs.io/projects/tutorials/en/latest/#](https://pcl.readthedocs.io/projects/tutorials/en/latest/#)
- 官方各模块对应的对象和函数【英文】:
- [https://pointclouds.org/documentation/modules.html](https://pointclouds.org/documentation/modules.html)
- [https://pointclouds.org/](https://pointclouds.org/) 点击网站中的12宫图,没一格对应一个模块的对象函数详解
- [黑马机器人系列文档:PCL-3D点云](http://robot.czxy.com/docs/pcl/):[http://robot.czxy.com/docs/pcl/](http://robot.czxy.com/docs/pcl/)
- [CSDN博主系列文章PCL学习(64篇)](https://www.cnblogs.com/li-yao7758258/category/954066.html):[https://www.cnblogs.com/li-yao7758258/category/954066.html](https://www.cnblogs.com/li-yao7758258/category/954066.html)

## Citation
If you find this project useful in your research, please consider cite:

```
@misc{pcl-learning2020,
title={A Complete Study Guide on How to Learn PCL (Point Cloud Library).},
author={Chongqing, Huang},
howpublished = {\url{https://github.com/HuangCongQing/pcl-learning}},
year={2020}
}
```

### 欢迎交流
后续会根据逐步完善,欢迎大家提出宝贵意见,也欢迎大家提issue pr,还有star⭐️。

可以领取优惠加入星球使劲向我提问哈~


> PLus: 创建了一个知识星球 **【自动驾驶感知(PCL/ROS+DL)】** 专注于自动驾驶感知领域,包括传统方法(PCL点云库,ROS)和深度学习(目标检测+语义分割)方法。同时涉及Apollo,Autoware(基于ros2),BEV感知,三维重建,SLAM(视觉+激光雷达) ,模型压缩(蒸馏+剪枝+量化等),自动驾驶模拟仿真,自动驾驶数据集标注&数据闭环等自动驾驶全栈技术,欢迎扫码二维码加入,一起登顶自动驾驶的高峰!

微信公众号:**【双愚】**(huang_chongqing) 聊科研技术,谈人生思考,欢迎关注~

**往期推荐:**
1. [本文不提供职业建议,却能助你一生](https://mp.weixin.qq.com/s/rBR62qoAEeT56gGYTA0law)
2. [聊聊我们大学生面试](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247484016&idx=1&sn=08bc46266e00572e46f3e5d9ffb7c612&chksm=ec2aae77db5d276150cde1cb1dc6a53e03eba024adfbd1b22a048a7320c2b6872fb9dfef32aa&scene=178&cur_album_id=2253272068899471368#rd)
3. [清华大学刘知远:好的研究方法从哪来](https://mp.weixin.qq.com/s?__biz=MzI4OTY1MjA3Mg==&mid=2247486340&idx=1&sn=6c5f69bb37d91a343b1a1e7f6929ddae&chksm=ec2aa783db5d2e95ba4c472471267721cafafbe10c298a6d5fae9fed295f455a72f783872249&scene=178&cur_album_id=1855544495514140673#rd)

**最后,如果您想要支持我的工作,请扫描下面的二维码**

### License

Copyright (c) [双愚](https://github.com/HuangCongQing/pcl-learning). All rights reserved.

Licensed under the [MIT](./LICENSE) License.