https://github.com/huawei-noah/Efficient-Computing
Efficient computing methods developed by Huawei Noah's Ark Lab
https://github.com/huawei-noah/Efficient-Computing
binary-neural-networks knowledge-distillation model-compression pruning quantization self-supervised
Last synced: 11 months ago
JSON representation
Efficient computing methods developed by Huawei Noah's Ark Lab
- Host: GitHub
- URL: https://github.com/huawei-noah/Efficient-Computing
- Owner: huawei-noah
- Created: 2019-09-04T10:39:36.000Z (over 6 years ago)
- Default Branch: master
- Last Pushed: 2024-04-08T09:17:21.000Z (almost 2 years ago)
- Last Synced: 2024-05-22T01:01:24.258Z (over 1 year ago)
- Topics: binary-neural-networks, knowledge-distillation, model-compression, pruning, quantization, self-supervised
- Language: Jupyter Notebook
- Homepage:
- Size: 98.7 MB
- Stars: 1,119
- Watchers: 21
- Forks: 198
- Open Issues: 14
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- StarryDivineSky - huawei-noah/Efficient-Computing - Computing项目,专注于开发高效计算方法。该项目可能包含多种优化计算性能的技术和工具。具体实现细节和适用场景需要查阅项目文档。项目目标是提升计算效率,可能涉及算法优化、硬件加速或其他创新技术。该项目可能包含代码示例、基准测试和相关研究论文。如需了解更多信息,请查阅项目中的README.md和其他文档。项目特色可能包括高性能、低功耗或特定领域的优化。项目工作原理可能涉及并行计算、分布式计算或异构计算。该项目可能面向开发者、研究人员和对高效计算感兴趣的从业者。请注意,具体功能和性能取决于项目的最新版本和配置。 (其他_机器学习与深度学习)