Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/huggingface/setfit

Efficient few-shot learning with Sentence Transformers
https://github.com/huggingface/setfit

few-shot-learning nlp sentence-transformers

Last synced: 4 days ago
JSON representation

Efficient few-shot learning with Sentence Transformers

Awesome Lists containing this project

README

        


🤗 Models | 📊 Datasets | 📕 Documentation | 📖 Blog | 📃 Paper

# SetFit - Efficient Few-shot Learning with Sentence Transformers

SetFit is an efficient and prompt-free framework for few-shot fine-tuning of [Sentence Transformers](https://sbert.net/). It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples 🤯!

Compared to other few-shot learning methods, SetFit has several unique features:

* 🗣 **No prompts or verbalizers:** Current techniques for few-shot fine-tuning require handcrafted prompts or verbalizers to convert examples into a format suitable for the underlying language model. SetFit dispenses with prompts altogether by generating rich embeddings directly from text examples.
* 🏎 **Fast to train:** SetFit doesn't require large-scale models like T0 or GPT-3 to achieve high accuracy. As a result, it is typically an order of magnitude (or more) faster to train and run inference with.
* 🌎 **Multilingual support**: SetFit can be used with any [Sentence Transformer](https://huggingface.co/models?library=sentence-transformers&sort=downloads) on the Hub, which means you can classify text in multiple languages by simply fine-tuning a multilingual checkpoint.

Check out the [SetFit Documentation](https://huggingface.co/docs/setfit) for more information!

## Installation

Download and install `setfit` by running:

```bash
pip install setfit
```

If you want the bleeding-edge version instead, install from source by running:

```bash
pip install git+https://github.com/huggingface/setfit.git
```

## Usage

The [quickstart](https://huggingface.co/docs/setfit/quickstart) is a good place to learn about training, saving, loading, and performing inference with SetFit models.

For more examples, check out the [`notebooks`](https://github.com/huggingface/setfit/tree/main/notebooks) directory, the [tutorials](https://huggingface.co/docs/setfit/tutorials/overview), or the [how-to guides](https://huggingface.co/docs/setfit/how_to/overview).

### Training a SetFit model

`setfit` is integrated with the [Hugging Face Hub](https://huggingface.co/) and provides two main classes:

* [`SetFitModel`](https://huggingface.co/docs/setfit/reference/main#setfit.SetFitModel): a wrapper that combines a pretrained body from `sentence_transformers` and a classification head from either [`scikit-learn`](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) or [`SetFitHead`](https://huggingface.co/docs/setfit/reference/main#setfit.SetFitHead) (a differentiable head built upon `PyTorch` with similar APIs to `sentence_transformers`).
* [`Trainer`](https://huggingface.co/docs/setfit/reference/trainer#setfit.Trainer): a helper class that wraps the fine-tuning process of SetFit.

Here is a simple end-to-end training example using the default classification head from `scikit-learn`:

```python
from datasets import load_dataset
from setfit import SetFitModel, Trainer, TrainingArguments, sample_dataset

# Load a dataset from the Hugging Face Hub
dataset = load_dataset("sst2")

# Simulate the few-shot regime by sampling 8 examples per class
train_dataset = sample_dataset(dataset["train"], label_column="label", num_samples=8)
eval_dataset = dataset["validation"].select(range(100))
test_dataset = dataset["validation"].select(range(100, len(dataset["validation"])))

# Load a SetFit model from Hub
model = SetFitModel.from_pretrained(
"sentence-transformers/paraphrase-mpnet-base-v2",
labels=["negative", "positive"],
)

args = TrainingArguments(
batch_size=16,
num_epochs=4,
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
)

trainer = Trainer(
model=model,
args=args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
metric="accuracy",
column_mapping={"sentence": "text", "label": "label"} # Map dataset columns to text/label expected by trainer
)

# Train and evaluate
trainer.train()
metrics = trainer.evaluate(test_dataset)
print(metrics)
# {'accuracy': 0.8691709844559585}

# Push model to the Hub
trainer.push_to_hub("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2")

# Download from Hub
model = SetFitModel.from_pretrained("tomaarsen/setfit-paraphrase-mpnet-base-v2-sst2")
# Run inference
preds = model.predict(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"])
print(preds)
# ["positive", "negative"]
```

## Reproducing the results from the paper

We provide scripts to reproduce the results for SetFit and various baselines presented in Table 2 of our paper. Check out the setup and training instructions in the [`scripts/`](scripts/) directory.

## Developer installation

To run the code in this project, first create a Python virtual environment using e.g. Conda:

```bash
conda create -n setfit python=3.9 && conda activate setfit
```

Then install the base requirements with:

```bash
pip install -e '.[dev]'
```

This will install mandatory packages for SetFit like `datasets` as well as development packages like `black` and `isort` that we use to ensure consistent code formatting.

### Formatting your code

We use `black` and `isort` to ensure consistent code formatting. After following the installation steps, you can check your code locally by running:

```
make style && make quality
```

## Project structure

```
├── LICENSE
├── Makefile <- Makefile with commands like `make style` or `make tests`
├── README.md <- The top-level README for developers using this project.
├── docs <- Documentation source
├── notebooks <- Jupyter notebooks.
├── final_results <- Model predictions from the paper
├── scripts <- Scripts for training and inference
├── setup.cfg <- Configuration file to define package metadata
├── setup.py <- Make this project pip installable with `pip install -e`
├── src <- Source code for SetFit
└── tests <- Unit tests
```

## Related work

* [https://github.com/pmbaumgartner/setfit](https://github.com/pmbaumgartner/setfit) - A scikit-learn API version of SetFit.
* [jxpress/setfit-pytorch-lightning](https://github.com/jxpress/setfit-pytorch-lightning) - A PyTorch Lightning implementation of SetFit.
* [davidberenstein1957/spacy-setfit](https://github.com/davidberenstein1957/spacy-setfit) - An easy and intuitive approach to use SetFit in combination with spaCy.

## Citation

```bibtex
@misc{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```