Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/huggingface/trl
Train transformer language models with reinforcement learning.
https://github.com/huggingface/trl
Last synced: 3 months ago
JSON representation
Train transformer language models with reinforcement learning.
- Host: GitHub
- URL: https://github.com/huggingface/trl
- Owner: huggingface
- License: apache-2.0
- Created: 2020-03-27T10:54:55.000Z (almost 5 years ago)
- Default Branch: main
- Last Pushed: 2024-06-12T20:52:51.000Z (8 months ago)
- Last Synced: 2024-06-12T22:29:43.319Z (8 months ago)
- Language: Python
- Homepage: http://hf.co/docs/trl
- Size: 6.39 MB
- Stars: 8,490
- Watchers: 78
- Forks: 1,028
- Open Issues: 59
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
- Citation: CITATION.cff
Awesome Lists containing this project
- Awesome-LLM-Productization - trl - a full stack library where we provide a set of tools to train transformer language models and stable diffusion models with Reinforcement Learning; (Models and Tools / LLM Finetuning)
- awesome - huggingface/trl - Train transformer language models with reinforcement learning. (Python)
- awesome-local-ai - TRL - Language model alignment with reinforcement learning. (Training)
- awesome-llmops - TRL - square) | (Training / Foundation Model Fine Tuning)
- StarryDivineSky - huggingface/trl
- awesome-production-machine-learning - TRL - Train transformer language models with reinforcement learning. (Industry Strength RL)
- AiTreasureBox - huggingface/trl - 01-19_10632_5](https://img.shields.io/github/stars/huggingface/trl.svg)|Train transformer language models with reinforcement learning.| (Repos)
README
# TRL - Transformer Reinforcement Learning
> Full stack library to fine-tune and align large language models.## What is it?
The `trl` library is a full stack tool to fine-tune and align transformer language and diffusion models using methods such as Supervised Fine-tuning step (SFT), Reward Modeling (RM) and the Proximal Policy Optimization (PPO) as well as Direct Preference Optimization (DPO).
The library is built on top of the [`transformers`](https://github.com/huggingface/transformers) library and thus allows to use any model architecture available there.
## Highlights
- **`Efficient and scalable`**:
- [`accelerate`](https://github.com/huggingface/accelerate) is the backbone of `trl` which allows to scale model training from a single GPU to a large scale multi-node cluster with methods such as DDP and DeepSpeed.
- [`PEFT`](https://github.com/huggingface/peft) is fully integrated and allows to train even the largest models on modest hardware with quantisation and methods such as LoRA or QLoRA.
- [`unsloth`](https://github.com/unslothai/unsloth) is also integrated and allows to significantly speed up training with dedicated kernels.
- **`CLI`**: With the [CLI](https://huggingface.co/docs/trl/clis) you can fine-tune and chat with LLMs without writing any code using a single command and a flexible config system.
- **`Trainers`**: The Trainer classes are an abstraction to apply many fine-tuning methods with ease such as the [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.DPOTrainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer), [`PPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.PPOTrainer), [`CPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.CPOTrainer), and [`ORPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.ORPOTrainer).
- **`AutoModels`**: The [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) & [`AutoModelForSeq2SeqLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForSeq2SeqLMWithValueHead) classes add an additional value head to the model which allows to train them with RL algorithms such as PPO.
- **`Examples`**: Train GPT2 to generate positive movie reviews with a BERT sentiment classifier, full RLHF using adapters only, train GPT-j to be less toxic, [StackLlama example](https://huggingface.co/blog/stackllama), etc. following the [examples](https://github.com/huggingface/trl/tree/main/examples).## Installation
### Python package
Install the library with `pip`:
```bash
pip install trl
```### From source
If you want to use the latest features before an official release you can install from source:
```bash
pip install git+https://github.com/huggingface/trl.git
```### Repository
If you want to use the examples you can clone the repository with the following command:
```bash
git clone https://github.com/huggingface/trl.git
```## Command Line Interface (CLI)
You can use TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT), Direct Preference Optimization (DPO) and test your aligned model with the chat CLI:
**SFT:**
```bash
trl sft --model_name_or_path facebook/opt-125m --dataset_name imdb --output_dir opt-sft-imdb
```**DPO:**
```bash
trl dpo --model_name_or_path facebook/opt-125m --dataset_name trl-internal-testing/hh-rlhf-helpful-base-trl-style --output_dir opt-sft-hh-rlhf
```**Chat:**
```bash
trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
```Read more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details.
## How to use
For more flexibility and control over the training, you can use the dedicated trainer classes to fine-tune the model in Python.
### `SFTTrainer`
This is a basic example of how to use the `SFTTrainer` from the library. The `SFTTrainer` is a light wrapper around the `transformers` Trainer to easily fine-tune language models or adapters on a custom dataset.
```python
# imports
from datasets import load_dataset
from trl import SFTTrainer# get dataset
dataset = load_dataset("imdb", split="train")# get trainer
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=512,
)# train
trainer.train()
```### `RewardTrainer`
This is a basic example of how to use the `RewardTrainer` from the library. The `RewardTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset.
```python
# imports
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from trl import RewardTrainer# load model and dataset - dataset needs to be in a specific format
model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1)
tokenizer = AutoTokenizer.from_pretrained("gpt2")...
# load trainer
trainer = RewardTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)# train
trainer.train()
```### `PPOTrainer`
This is a basic example of how to use the `PPOTrainer` from the library. Based on a query the language model creates a response which is then evaluated. The evaluation could be a human in the loop or another model's output.
```python
# imports
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
from trl.core import respond_to_batch# get models
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
ref_model = create_reference_model(model)tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token# initialize trainer
ppo_config = PPOConfig(batch_size=1, mini_batch_size=1)# encode a query
query_txt = "This morning I went to the "
query_tensor = tokenizer.encode(query_txt, return_tensors="pt")# get model response
response_tensor = respond_to_batch(model, query_tensor)# create a ppo trainer
ppo_trainer = PPOTrainer(ppo_config, model, ref_model, tokenizer)# define a reward for response
# (this could be any reward such as human feedback or output from another model)
reward = [torch.tensor(1.0)]# train model for one step with ppo
train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)
```### `DPOTrainer`
`DPOTrainer` is a trainer that uses [Direct Preference Optimization algorithm](https://huggingface.co/papers/2305.18290). This is a basic example of how to use the `DPOTrainer` from the library. The `DPOTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset.
```python
# imports
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer# load model and dataset - dataset needs to be in a specific format
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")...
# load trainer
trainer = DPOTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)# train
trainer.train()
```## Development
If you want to contribute to `trl` or customizing it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install:
```bash
git clone https://github.com/huggingface/trl.git
cd trl/
make dev
```## References
### Proximal Policy Optimisation
The PPO implementation largely follows the structure introduced in the paper **"Fine-Tuning Language Models from Human Preferences"** by D. Ziegler et al. \[[paper](https://huggingface.co/papers/1909.08593), [code](https://github.com/openai/lm-human-preferences)].### Direct Preference Optimization
DPO is based on the original implementation of **"Direct Preference Optimization: Your Language Model is Secretly a Reward Model"** by E. Mitchell et al. \[[paper](https://huggingface.co/papers/2305.18290), [code](https://github.com/eric-mitchell/direct-preference-optimization)]## Citation
```bibtex
@misc{vonwerra2022trl,
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang},
title = {TRL: Transformer Reinforcement Learning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/trl}}
}
```