https://github.com/hugostrand/dat171
Lecture notes for: Object-oriented programming in Python (DAT171) @ Chalmers University of Technology
https://github.com/hugostrand/dat171
Last synced: about 2 months ago
JSON representation
Lecture notes for: Object-oriented programming in Python (DAT171) @ Chalmers University of Technology
- Host: GitHub
- URL: https://github.com/hugostrand/dat171
- Owner: HugoStrand
- Created: 2020-01-13T10:25:39.000Z (over 5 years ago)
- Default Branch: master
- Last Pushed: 2025-01-31T08:24:47.000Z (4 months ago)
- Last Synced: 2025-02-13T08:31:57.606Z (4 months ago)
- Language: Jupyter Notebook
- Homepage: https://chalmers.instructure.com/courses/8757/assignments/syllabus
- Size: 1.14 MB
- Stars: 1
- Watchers: 1
- Forks: 0
- Open Issues: 0
-
Metadata Files:
- Readme: Readme.md
Awesome Lists containing this project
README
# Lectures
## Lecture 1: Course information
- Course litterature
- Lectures and exam
- Computer assignments
- Python, PyCharm and Jupyter## [Lecture 2: Core features](https://nbviewer.jupyter.org/github/HugoStrand/DAT171/blob/master/lectures/Lecture02/Lecture02.ipynb) [](https://mybinder.org/v2/gh/HugoStrand/DAT171/master?filepath=lectures%2FLecture02%2FLecture02.ipynb)
- Types
- Strings, lists, dictionaries, sets, tuples
- Operators
- Conditionals, loops, list/set/dictionary comprehensions
- Functions and (optional) arguments
- Scope
- Lambda functions
- References and copies
- Importing and namespaces
- Help and documentation
- Errors## [Lecture 3: Core features and NumPy Intro](https://nbviewer.jupyter.org/github/HugoStrand/DAT171/blob/master/lectures/Lecture03/Lecture03.ipynb) [](https://mybinder.org/v2/gh/HugoStrand/DAT171/master?filepath=lectures%2FLecture03%2FLecture03.ipynb)
- Printing
- Strings
- File IO
- NumPy multidimensional arrays
- **Computer Assignment 1**## [Lecture 4: NumPy and Matplotlib](https://nbviewer.jupyter.org/github/HugoStrand/DAT171/blob/master/lectures/Lecture04/Lecture04.ipynb) []( https://mybinder.org/v2/gh/HugoStrand/DAT171/master?filepath=lectures%2FLecture04%2FLecture04.ipynb )
- Arrays, indexing, slicing
- Reductions, sum, product, integration
- Linear algebra, tensor contractions
- Plotting, figure components
- Subplots, limits, legends, titles
- Styling, colors, markers, linestyles
- Plots, error bars, histograms, contour plots, 3D plotting## [Lecture 5: Scientific Python (SciPy)](https://nbviewer.jupyter.org/github/HugoStrand/DAT171/blob/master/lectures/Lecture05/Lecture05.ipynb) []( https://mybinder.org/v2/gh/HugoStrand/DAT171/master?filepath=lectures%2FLecture05%2FLecture05.ipynb )
- Integration, adaptive quadrature
- Ordinary Differential Equations (ODEs)
- Interpolation
- Linear algebra
- Optimization, root finding
- Sparse matrices
- Graph algorithms, triangulation
- Statistics
- Signal and image processing
- File IO## [Lecture 6: Writing a library, documentation](https://nbviewer.jupyter.org/github/HugoStrand/DAT171/blob/master/lectures/Lecture06/Lecture06.ipynb) []( https://mybinder.org/v2/gh/HugoStrand/DAT171/master?filepath=lectures%2FLecture06%2FLecture06.ipynb)
- Commenting and documenting code
- Python DocStrings
- Modules and packages
- Namespace and scope
- Command line arguments
- The Zen of Python