https://github.com/hugovk/pypistats
Command-line interface to PyPI Stats API to get download stats for Python packages
https://github.com/hugovk/pypistats
api cli command-line command-line-tool downloads hacktoberfest pypi python python3 statistics stats
Last synced: 20 days ago
JSON representation
Command-line interface to PyPI Stats API to get download stats for Python packages
- Host: GitHub
- URL: https://github.com/hugovk/pypistats
- Owner: hugovk
- License: mit
- Created: 2018-09-22T09:19:12.000Z (over 6 years ago)
- Default Branch: main
- Last Pushed: 2025-04-01T18:14:56.000Z (about 1 month ago)
- Last Synced: 2025-04-07T08:09:01.410Z (27 days ago)
- Topics: api, cli, command-line, command-line-tool, downloads, hacktoberfest, pypi, python, python3, statistics, stats
- Language: Python
- Homepage: https://pypistats.org/api/
- Size: 908 KB
- Stars: 210
- Watchers: 3
- Forks: 29
- Open Issues: 3
-
Metadata Files:
- Readme: README.md
- License: LICENSE.txt
Awesome Lists containing this project
README
# pypistats
[](https://pypi.org/project/pypistats/)
[](https://pypi.org/project/pypistats/)
[](https://pypistats.org/packages/pypistats)
[](https://dev.azure.com/hugovk/hugovk/_build?definitionId=1)
[](https://github.com/hugovk/pypistats/actions)
[](https://codecov.io/gh/hugovk/pypistats)
[](LICENSE.txt)
[](https://zenodo.org/badge/latestdoi/149862343)
[](https://github.com/psf/black)Python interface to [PyPI Stats API](https://pypistats.org/api) to get aggregate
download statistics on Python packages on the Python Package Index without having to
execute queries directly against Google BigQuery.Data is available for the [last 180 days](https://pypistats.org/about#data). (For longer
time periods, [pypinfo](https://github.com/ofek/pypinfo) can help, you'll need an API
key and get free quota.)## Installation
### From PyPI
```bash
python3 -m pip install --upgrade pypistats
```### From source
```bash
git clone https://github.com/hugovk/pypistats
cd pypistats
python3 -m pip install .
```## Example command-line use
Run `pypistats` with a subcommand (corresponding to
[PyPI Stats endpoints](https://pypistats.org/api/#endpoints)), then options for that
subcommand.Top-level help:
```console
$ pypistats --help
usage: pypistats [-h] [-V] {recent,overall,python_major,python_minor,system} ...positional arguments:
{recent,overall,python_major,python_minor,system}options:
-h, --help show this help message and exit
-V, --version show program's version number and exit
```Help for a subcommand:
```console
$ pypistats recent --help
usage: pypistats recent [-h] [-p {day,week,month}]
[-f {html,json,pretty,md,markdown,rst,tsv}] [-j] [-v]
packageRetrieve the aggregate download quantities for the last 1/7/30 days,
excluding downloads from mirrorspositional arguments:
packageoptions:
-h, --help show this help message and exit
-p, --period {day,week,month}
-f, --format {html,json,pretty,md,markdown,rst,tsv}
The format of output (default: pretty)
-j, --json Shortcut for "-f json" (default: False)
-v, --verbose Print debug messages to stderr (default: False)
```Get recent downloads:
```console
$ pypistats recent pillow
┌───────────┬─────────────┬────────────┐
│ last_day │ last_month │ last_week │
├───────────┼─────────────┼────────────┤
│ 5,142,717 │ 125,777,276 │ 30,415,118 │
└───────────┴─────────────┴────────────┘
```Help for another subcommand:
```console
$ pypistats python_minor --help
usage: pypistats python_minor [-h] [-V VERSION]
[-f {html,json,pretty,md,markdown,rst,tsv}] [-j]
[-sd yyyy-mm[-dd]|name] [-ed yyyy-mm[-dd]|name]
[-m yyyy-mm|name] [-l] [-t] [-d] [--monthly]
[-c {yes,no,auto}] [-v]
packageRetrieve the aggregate daily download time series by Python minor version number
positional arguments:
packageoptions:
-h, --help show this help message and exit
-V, --version VERSION
eg. 2.7 or 3.6 (default: None)
-f, --format {html,json,pretty,md,markdown,rst,tsv}
The format of output (default: pretty)
-j, --json Shortcut for "-f json" (default: False)
-sd, --start-date yyyy-mm[-dd]|name
Start date (default: None)
-ed, --end-date yyyy-mm[-dd]|name
End date (default: None)
-m, --month yyyy-mm|name
Shortcut for -sd & -ed for a single month (default: None)
-l, --last-month Shortcut for -sd & -ed for last month (default: False)
-t, --this-month Shortcut for -sd for this month (default: False)
-d, --daily Show daily downloads (default: False)
--monthly Show monthly downloads (default: False)
-c, --color {yes,no,auto}
Color terminal output (default: auto)
-v, --verbose Print debug messages to stderr (default: False)
```Get version downloads:
```console
$ pypistats python_minor pillow --last-month
┌──────────┬─────────┬─────────────┐
│ category │ percent │ downloads │
├──────────┼─────────┼─────────────┤
│ 3.10 │ 19.31% │ 24,065,642 │
│ 3.11 │ 17.45% │ 21,749,566 │
│ 3.12 │ 15.68% │ 19,541,358 │
│ 3.9 │ 13.93% │ 17,370,148 │
│ 3.7 │ 12.86% │ 16,034,418 │
│ 3.8 │ 9.69% │ 12,077,524 │
│ null │ 5.89% │ 7,341,287 │
│ 3.13 │ 2.99% │ 3,728,426 │
│ 3.6 │ 1.81% │ 2,255,947 │
│ 2.7 │ 0.38% │ 468,671 │
│ 3.5 │ 0.01% │ 15,575 │
│ 3.14 │ 0.00% │ 5,804 │
│ 3.4 │ 0.00% │ 907 │
│ 3.1 │ 0.00% │ 37 │
│ 3.3 │ 0.00% │ 16 │
│ 3.2 │ 0.00% │ 6 │
│ 3.99 │ 0.00% │ 1 │
│ Total │ │ 124,655,333 │
└──────────┴─────────┴─────────────┘Date range: 2025-01-01 - 2025-01-31
```You can format in Markdown, ready for pasting in GitHub issues and PRs:
| category | percent | downloads |
| :------- | ------: | ----------: |
| 3.10 | 19.31% | 24,065,642 |
| 3.11 | 17.45% | 21,749,566 |
| 3.12 | 15.68% | 19,541,358 |
| 3.9 | 13.93% | 17,370,148 |
| 3.7 | 12.86% | 16,034,418 |
| 3.8 | 9.69% | 12,077,524 |
| null | 5.89% | 7,341,287 |
| 3.13 | 2.99% | 3,728,426 |
| 3.6 | 1.81% | 2,255,947 |
| 2.7 | 0.38% | 468,671 |
| 3.5 | 0.01% | 15,575 |
| 3.14 | 0.00% | 5,804 |
| 3.4 | 0.00% | 907 |
| 3.1 | 0.00% | 37 |
| 3.3 | 0.00% | 16 |
| 3.2 | 0.00% | 6 |
| 3.99 | 0.00% | 1 |
| Total | | 124,655,333 |Date range: 2025-01-01 - 2025-01-31
These are equivalent (in May 2019):
```sh
pypistats python_major pip --last-month
pypistats python_major pip --month april
pypistats python_major pip --month apr
pypistats python_major pip --month 2019-04
```And:
```sh
pypistats python_major pip --start-date december --end-date january
pypistats python_major pip --start-date dec --end-date jan
pypistats python_major pip --start-date 2018-12 --end-date 2019-01
```## Example programmatic use
Return values are from the JSON responses documented in the API:
https://pypistats.org/api/```python
import pypistats
from pprint import pprint# Call the API
print(pypistats.recent("pillow"))
print(pypistats.recent("pillow", "day", format="markdown"))
print(pypistats.recent("pillow", "week", format="rst"))
print(pypistats.recent("pillow", "month", format="html"))
pprint(pypistats.recent("pillow", "week", format="json"))
print(pypistats.recent("pillow", "day"))print(pypistats.overall("pillow"))
print(pypistats.overall("pillow", mirrors=True, format="markdown"))
print(pypistats.overall("pillow", mirrors=False, format="rst"))
print(pypistats.overall("pillow", mirrors=True, format="html"))
pprint(pypistats.overall("pillow", mirrors=False, format="json"))print(pypistats.python_major("pillow"))
print(pypistats.python_major("pillow", version=2, format="markdown"))
print(pypistats.python_major("pillow", version=3, format="rst"))
print(pypistats.python_major("pillow", version="2", format="html"))
pprint(pypistats.python_major("pillow", version="3", format="json"))print(pypistats.python_minor("pillow"))
print(pypistats.python_minor("pillow", version=2.7, format="markdown"))
print(pypistats.python_minor("pillow", version="2.7", format="rst"))
print(pypistats.python_minor("pillow", version=3.7, format="html"))
pprint(pypistats.python_minor("pillow", version="3.7", format="json"))print(pypistats.system("pillow"))
print(pypistats.system("pillow", os="darwin", format="markdown"))
print(pypistats.system("pillow", os="linux", format="rst"))
print(pypistats.system("pillow", os="darwin", format="html"))
pprint(pypistats.system("pillow", os="linux", format="json"))
```### NumPy and pandas
To use with either NumPy or pandas, make sure they are first installed, or:
```bash
pip install --upgrade "pypistats[numpy]"
pip install --upgrade "pypistats[pandas]"
pip install --upgrade "pypistats[numpy,pandas]"
```Return data in a NumPy array for further processing:
```python
import pypistats
numpy_array = pypistats.overall("pyvista", total=True, format="numpy")
print(type(numpy_array))
#
print(numpy_array)
# [['with_mirrors' '2019-09-20' '2.23%' 1204]
# ['without_mirrors' '2019-09-20' '2.08%' 1122]
# ['with_mirrors' '2019-09-19' '0.92%' 496]
# ...
# ['with_mirrors' '2019-10-26' '0.02%' 13]
# ['without_mirrors' '2019-10-26' '0.02%' 12]
# ['Total' None None 54041]]
```Or in a pandas DataFrame:
```python
import pypistats
pandas_dataframe = pypistats.overall("pyvista", total=True, format="pandas")
print(type(pandas_dataframe))
#
print(pandas_dataframe)
# category date percent downloads
# 0 with_mirrors 2019-09-20 2.23% 1204
# 1 without_mirrors 2019-09-20 2.08% 1122
# 2 with_mirrors 2019-09-19 0.92% 496
# 3 with_mirrors 2019-08-22 0.90% 489
# 4 without_mirrors 2019-09-19 0.86% 466
# .. ... ... ... ...
# 354 without_mirrors 2019-11-03 0.03% 15
# 355 without_mirrors 2019-11-16 0.03% 15
# 356 with_mirrors 2019-10-26 0.02% 13
# 357 without_mirrors 2019-10-26 0.02% 12
# 358 Total None None 54041
#
# [359 rows x 4 columns]
```For example, create charts with pandas:
```python
# Show overall downloads over time, excluding mirrors
import pypistats
data = pypistats.overall("pillow", total=True, format="pandas")
data = data.groupby("category").get_group("without_mirrors").sort_values("date")chart = data.plot(x="date", y="downloads", figsize=(10, 2))
chart.figure.show()
chart.figure.savefig("overall.png") # alternatively
```
```python
# Show Python 3 downloads over time
import pypistats
data = pypistats.python_major("pillow", total=True, format="pandas")
data = data.groupby("category").get_group(3).sort_values("date")chart = data.plot(x="date", y="downloads", figsize=(10, 2))
chart.figure.show()
chart.figure.savefig("python3.png") # alternatively
```
## See also
Related projects
- https://github.com/ofek/pypinfo
- https://github.com/scivision/pypistats-plots