https://github.com/huixxi/cs234-reinforcement-learning-winter-2019
My Solutions of Assignments of CS234: Reinforcement Learning Winter 2019
https://github.com/huixxi/cs234-reinforcement-learning-winter-2019
course cs234 cs234-assignments deep-reinforcement-learning openai-gym python3 reinforcement-learning stanford-online
Last synced: 6 months ago
JSON representation
My Solutions of Assignments of CS234: Reinforcement Learning Winter 2019
- Host: GitHub
- URL: https://github.com/huixxi/cs234-reinforcement-learning-winter-2019
- Owner: Huixxi
- License: mit
- Created: 2019-05-05T10:24:53.000Z (about 6 years ago)
- Default Branch: master
- Last Pushed: 2023-03-24T22:43:19.000Z (about 2 years ago)
- Last Synced: 2024-12-10T08:51:31.390Z (6 months ago)
- Topics: course, cs234, cs234-assignments, deep-reinforcement-learning, openai-gym, python3, reinforcement-learning, stanford-online
- Language: Python
- Homepage:
- Size: 1.46 MB
- Stars: 165
- Watchers: 5
- Forks: 48
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README

# CS234-Reinforcement-Learning
My Solutions of Assignments of [CS234: Reinforcement Learning Winter 2019](http://web.stanford.edu/class/cs234/index.html)
***
### Lecture Videos
This course contains 15 lecture videos, and you can watch them from youtube and bilibili(vpn free).
* [YouTube StanfordOnline](https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u)
* [Bilibili](https://www.bilibili.com/video/av47812079?from=search&seid=3645116309541169863)You can download the slides for each lecture from [here](http://web.stanford.edu/class/cs234/schedule.html).
***
### Assignments
* [assignment 1](https://github.com/Huixxi/CS234-Reinforcement-Learning-Winter-2019/tree/master/assignment%201)* [assignment 2](https://github.com/Huixxi/CS234-Reinforcement-Learning-Winter-2019/tree/master/assignment%202)
* [assignment 3](https://github.com/Huixxi/CS234-Reinforcement-Learning-Winter-2019/tree/master/assignment%203)
***
### Highly Recommended RL Resources
* Resources List
* [RL Resources](https://docs.google.com/document/d/1frWabYtrRE4_Ak2fhcNtk7U-ujtU5Aq762Nq-Ryi9A8/edit)
* TextBooks
* [Reinforcement Learning: An Introduction 2nd Edition. (R.Sutton, G.Barto)](http://incompleteideas.net/book/the-book-2nd.html)
* [Deep Learning. (Yoshua Bengio)](http://www.deeplearningbook.org/)* RL Courses
* [OpenAI Spining Up](https://spinningup.openai.com/en/latest/)
* [RL-DeepMind Tutorials 2018 (Video)](https://www.youtube.com/playlist?list=PLTrPwBmRciYBs4a8qQVuFz3zByUqqoStG)* Papers:
`Deep Q Learning`
* [DeepMind Nature Paper](https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf)
* [Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)
* [Prioritized Experience Replay](https://arxiv.org/pdf/1511.05952.pdf)
`Imitation Learning`
* [Generative Adversarial Imitation Learning(GAIL)](https://arxiv.org/pdf/1606.03476.pdf)
* [Maximum Entropy Inverse Reinforcement Learning](https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf)
* Blogs:
* [Policy Gradient Algorithm](https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html)
* [Meta Reinforcement Learning](https://lilianweng.github.io/lil-log/2019/06/23/meta-reinforcement-learning.html)
* [Rainbow](https://github.com/Huixxi/TensorFlow2.0-for-Deep-Reinforcement-Learning/blob/master/tutorial_blogs/Building_Rainbow_Step_by_Step_with_TensorFlow2.0.md)* Podcasts:
* [TalkRL](https://www.talkrl.com/)
* [DeepMind: The Podcast](https://podcasts.google.com/?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9KVDZwYlBrZw%3D%3D)***
### Author
[@Huxixi](https://github.com/Huixxi)