An open API service indexing awesome lists of open source software.

https://github.com/huixxi/cs234-reinforcement-learning-winter-2019

My Solutions of Assignments of CS234: Reinforcement Learning Winter 2019
https://github.com/huixxi/cs234-reinforcement-learning-winter-2019

course cs234 cs234-assignments deep-reinforcement-learning openai-gym python3 reinforcement-learning stanford-online

Last synced: 6 months ago
JSON representation

My Solutions of Assignments of CS234: Reinforcement Learning Winter 2019

Awesome Lists containing this project

README

        

![](https://github.com/Huixxi/CS234-Reinforcement-Learning-Winter-2019/blob/master/rl_images/Cover.jpg)
# CS234-Reinforcement-Learning
My Solutions of Assignments of [CS234: Reinforcement Learning Winter 2019](http://web.stanford.edu/class/cs234/index.html)
***
### Lecture Videos
This course contains 15 lecture videos, and you can watch them from youtube and bilibili(vpn free).
* [YouTube StanfordOnline](https://www.youtube.com/playlist?list=PLoROMvodv4rOSOPzutgyCTapiGlY2Nd8u)
* [Bilibili](https://www.bilibili.com/video/av47812079?from=search&seid=3645116309541169863)

You can download the slides for each lecture from [here](http://web.stanford.edu/class/cs234/schedule.html).

***
### Assignments
* [assignment 1](https://github.com/Huixxi/CS234-Reinforcement-Learning-Winter-2019/tree/master/assignment%201)

* [assignment 2](https://github.com/Huixxi/CS234-Reinforcement-Learning-Winter-2019/tree/master/assignment%202)

* [assignment 3](https://github.com/Huixxi/CS234-Reinforcement-Learning-Winter-2019/tree/master/assignment%203)

***
### Highly Recommended RL Resources
* Resources List
* [RL Resources](https://docs.google.com/document/d/1frWabYtrRE4_Ak2fhcNtk7U-ujtU5Aq762Nq-Ryi9A8/edit)
* TextBooks
* [Reinforcement Learning: An Introduction 2nd Edition. (R.Sutton, G.Barto)](http://incompleteideas.net/book/the-book-2nd.html)
* [Deep Learning. (Yoshua Bengio)](http://www.deeplearningbook.org/)

* RL Courses
* [OpenAI Spining Up](https://spinningup.openai.com/en/latest/)
* [RL-DeepMind Tutorials 2018 (Video)](https://www.youtube.com/playlist?list=PLTrPwBmRciYBs4a8qQVuFz3zByUqqoStG)

* Papers:
`Deep Q Learning`
* [DeepMind Nature Paper](https://storage.googleapis.com/deepmind-data/assets/papers/DeepMindNature14236Paper.pdf)
* [Playing Atari with Deep Reinforcement Learning](https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf)
* [Prioritized Experience Replay](https://arxiv.org/pdf/1511.05952.pdf)

`Imitation Learning`
* [Generative Adversarial Imitation Learning(GAIL)](https://arxiv.org/pdf/1606.03476.pdf)
* [Maximum Entropy Inverse Reinforcement Learning](https://www.aaai.org/Papers/AAAI/2008/AAAI08-227.pdf)

* Blogs:
* [Policy Gradient Algorithm](https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html)
* [Meta Reinforcement Learning](https://lilianweng.github.io/lil-log/2019/06/23/meta-reinforcement-learning.html)
* [Rainbow](https://github.com/Huixxi/TensorFlow2.0-for-Deep-Reinforcement-Learning/blob/master/tutorial_blogs/Building_Rainbow_Step_by_Step_with_TensorFlow2.0.md)

* Podcasts:
* [TalkRL](https://www.talkrl.com/)
* [DeepMind: The Podcast](https://podcasts.google.com/?feed=aHR0cHM6Ly9mZWVkcy5zaW1wbGVjYXN0LmNvbS9KVDZwYlBrZw%3D%3D)

***
### Author
[@Huxixi](https://github.com/Huixxi)