Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hukaixuan19970627/yolov5_obb
yolov5 + csl_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测
https://github.com/hukaixuan19970627/yolov5_obb
aerial-imagery detection dota oriented rotated-object rotation yolov5
Last synced: 6 days ago
JSON representation
yolov5 + csl_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)基于yolov5的旋转目标检测
- Host: GitHub
- URL: https://github.com/hukaixuan19970627/yolov5_obb
- Owner: hukaixuan19970627
- License: gpl-3.0
- Created: 2021-03-17T09:13:16.000Z (almost 4 years ago)
- Default Branch: master
- Last Pushed: 2023-10-13T19:46:15.000Z (over 1 year ago)
- Last Synced: 2025-02-08T13:03:23.326Z (13 days ago)
- Topics: aerial-imagery, detection, dota, oriented, rotated-object, rotation, yolov5
- Language: Python
- Homepage:
- Size: 17.7 MB
- Stars: 1,872
- Watchers: 12
- Forks: 429
- Open Issues: 191
-
Metadata Files:
- Readme: README.md
- Contributing: CONTRIBUTING.md
- License: LICENSE
Awesome Lists containing this project
- awesome-yolo-object-detection - hukaixuan19970627/yolov5_obb
- awesome-yolo-object-detection - hukaixuan19970627/yolov5_obb
README
# Yolov5 for Oriented Object Detection


The code for the implementation of “[Yolov5](https://github.com/ultralytics/yolov5) + [Circular Smooth Label](https://arxiv.org/abs/2003.05597v2)”.
# Results and Models
The results on **DOTA_subsize1024_gap200_rate1.0** test-dev set are shown in the table below. (**password: yolo**)|Model
(download link) |Size
(pixels) | TTA
(multi-scale/
rotate testing) | OBB mAPtest
0.5
DOTAv1.0 | OBB mAPtest
0.5
DOTAv1.5 | OBB mAPtest
0.5
DOTAv2.0 | Speed
CPU b1
(ms)|Speed
2080Ti b1
(ms) |Speed
2080Ti b16
(ms) |params
(M) |FLOPs
@640 (B)
| ---- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
|yolov5m [[baidu](https://pan.baidu.com/s/1UPNaMuQ_gNce9167FZx8-w)/[google](https://drive.google.com/file/d/1NMgxcN98cmBg9_nVK4axxqfiq4pYh-as/view?usp=sharing)] |1024 | × |**77.3** |**73.2** |**58.0** |**328.2** |**16.9** |**11.3** |**21.6** |**50.5**
|yolov5s [[baidu](https://pan.baidu.com/s/1Lqw42xlSZxZn-2gNniBpmw?pwd=yolo)] |1024 | × |**76.8** |- |- |- |**15.6** | - |**7.5** |**17.5**
|yolov5n [[baidu](https://pan.baidu.com/s/1Lqw42xlSZxZn-2gNniBpmw?pwd=yolo)] |1024 | × |**73.3** |- |- |- |**15.2** | - |**2.0** |**5.0**Table Notes (click to expand / **点我看更多**)
* All checkpoints are trained to 300 epochs with [COCO pre-trained checkpoints](https://github.com/ultralytics/yolov5/releases/tag/v6.0), default settings and hyperparameters.
* **mAPtest dota** values are for single-model single-scale on [DOTA](https://captain-whu.github.io/DOTA/index.html)(1024,1024,200,1.0) dataset.
Reproduce Example:
```shell
python val.py --data 'data/dotav15_poly.yaml' --img 1024 --conf 0.01 --iou 0.4 --task 'test' --batch 16 --save-json --name 'dotav15_test_split'
python tools/TestJson2VocClassTxt.py --json_path 'runs/val/dotav15_test_split/best_obb_predictions.json' --save_path 'runs/val/dotav15_test_split/obb_predictions_Txt'
python DOTA_devkit/ResultMerge_multi_process.py --scrpath 'runs/val/dotav15_test_split/obb_predictions_Txt' --dstpath 'runs/val/dotav15_test_split/obb_predictions_Txt_Merged'
zip the poly format results files and submit it to https://captain-whu.github.io/DOTA/evaluation.html
```
* **Speed** averaged over DOTAv1.5 val_split_subsize1024_gap200 images using a 2080Ti gpu. NMS + pre-process times is included.
Reproduce by `python val.py --data 'data/dotav15_poly.yaml' --img 1024 --task speed --batch 1`# [Updates](./docs/ChangeLog.md)
- [2022/1/7] : **Faster and stronger**, some bugs fixed, yolov5 base version updated.# Installation
Please refer to [install.md](./docs/install.md) for installation and dataset preparation.# Getting Started
This repo is based on [yolov5](https://github.com/ultralytics/yolov5).And this repo has been rebuilt, Please see [GetStart.md](./docs/GetStart.md) for the Oriented Detection latest basic usage.
# Acknowledgements
I have used utility functions from other wonderful open-source projects. Espeicially thank the authors of:* [ultralytics/yolov5](https://github.com/ultralytics/yolov5).
* [Thinklab-SJTU/CSL_RetinaNet_Tensorflow](https://github.com/Thinklab-SJTU/CSL_RetinaNet_Tensorflow).
* [jbwang1997/OBBDetection](https://github.com/jbwang1997/OBBDetection)
* [CAPTAIN-WHU/DOTA_devkit](https://github.com/CAPTAIN-WHU/DOTA_devkit)
## More detailed explanation
想要了解相关实现的细节和原理可以看我的知乎文章:
* [自己改建YOLOv5旋转目标的踩坑记录](https://www.zhihu.com/column/c_1358464959123390464).## 有问题反馈
在使用中有任何问题,建议先按照[install.md](./docs/install.md)检查环境依赖项,再按照[GetStart.md](./docs/GetStart.md)检查使用流程是否正确,善用搜索引擎和github中的issue搜索框,可以极大程度上节省你的时间。若遇到的是新问题,可以用以下联系方式跟我交流,为了提高沟通效率,请尽可能地提供相关信息以便我复现该问题。
* 知乎(@[略略略](https://www.zhihu.com/people/lue-lue-lue-3-92-86))
* 代码问题提issues,其他问题请知乎上联系## 关于作者
```javascript
Name : "胡凯旋"
describe myself:"咸鱼一枚"