Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hukenovs/slovo
Slovo: Russian Sign Language Dataset and Models
https://github.com/hukenovs/slovo
dataset deep-learning gesture-recognition gestures-classification glosses open-source russian-language sign-language transformers
Last synced: 1 day ago
JSON representation
Slovo: Russian Sign Language Dataset and Models
- Host: GitHub
- URL: https://github.com/hukenovs/slovo
- Owner: hukenovs
- Created: 2023-04-02T15:58:03.000Z (over 1 year ago)
- Default Branch: main
- Last Pushed: 2024-08-22T16:39:17.000Z (3 months ago)
- Last Synced: 2024-08-22T18:58:12.557Z (3 months ago)
- Topics: dataset, deep-learning, gesture-recognition, gestures-classification, glosses, open-source, russian-language, sign-language, transformers
- Language: Python
- Homepage: https://arxiv.org/abs/2305.14527
- Size: 7.65 MB
- Stars: 61
- Watchers: 5
- Forks: 5
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: license/en_us.pdf
Awesome Lists containing this project
README
# Slovo - Russian Sign Language Dataset
We introduce a large-scale video dataset **Slovo** for Russian Sign Language task. Slovo dataset size is about **16 GB**, and it contains **20400** RGB videos for **1000** sign language gestures from 194 singers. Each class has 20 samples. The dataset is divided into training set and test set by subject `user_id`. The training set includes 15300 videos, and the test set includes 5100 videos. The total video recording time is ~9.2 hours. About 35% of the videos are recorded in HD format, and 65% of the videos are in FullHD resolution. The average video length with gesture is 50 frames.
For more information see our paper - [arXiv](https://arxiv.org/abs/2305.14527).
## Downloads
### [Main download link](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/slovo.zip)| Downloads | Size (GB) | Comment |
|--------------------------------------------------------------------------------------------------------:|:----------|:---------------------------------------------------------------------|
| [Slovo](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/slovo.zip) | ~16 | Trimmed HD+ videos by `(start, end)` annotations |
| [Origin](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/slovo_full.zip) | ~105 | Original HD+ videos from mining stage |
| [360p](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/slovo_full360.zip) | ~13 | Resized original videos by `min_side = 360` |
| [Landmarks](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/slovo_mediapipe.json) | ~1.2 | Mediapipe hand landmark annotations for each frame of trimmed videos |Also, you can download **Slovo** from [Kaggle](https://www.kaggle.com/datasets/kapitanov/slovo).
Annotation file is easy to use and contains some useful columns, see `annotations.csv` file:
| | attachment_id | user_id | width | height | length | text | train | begin | end |
|---:|:--------------|:--------|------:|-------:|-------:|-------:|:--------|:------|:----|
| 0 | de81cc1c-... | 1b... | 1440 | 1920 | 14 | привет | True | 30 | 45 |
| 1 | 3c0cec5a-... | 64... | 1440 | 1920 | 32 | утро | False | 43 | 66 |
| 2 | d17ca986-... | cf... | 1920 | 1080 | 44 | улица | False | 12 | 31 |where:
- `attachment_id` - video file name
- `user_id` - unique anonymized user ID
- `width` - video width
- `height` - video height
- `length` - video length
- `text` - gesture class in Russian Langauge
- `train` - train or test boolean flag
- `begin` - start of the gesture (for original dataset)
- `end` - end of the gesture (for original dataset)For convenience, we have also prepared a compressed version of the dataset, in which all videos are processed by the minimum side `min_side = 360`. Download link - **[slovo360p](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/slovo_full360.zip)**.
Also, we annotate trimmed videos by using **MediaPipe** and provide hand keypoints in [this annotation file](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/slovo_mediapipe.json).## Models
We provide some pre-trained models as the baseline for Russian sign language recognition.
We tested models with frames number from [16, 32, 48], and **the best for each are below**.
The first number in the model name is frames number and the second is frame interval.| Model Name | Model Size (MB) | Metric | ONNX | TorchScript |
|-------------------|-----------------|--------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| MViTv2-small-16-4 | 140.51 | 58.35 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/mvit/onnx/mvit16-4.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/mvit/pt/mvit16-4.pt) |
| MViTv2-small-32-2 | 140.79 | 64.09 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/mvit/onnx/mvit32-2.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/mvit/pt/mvit32-2.pt) |
| MViTv2-small-48-2 | 141.05 | 62.18 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/mvit/onnx/mvit48-2.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/mvit/pt/mvit48-2.pt) |
| Swin-large-16-3 | 821.65 | 48.04 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/swin/onnx/swin16-3.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/swin/pt/swin16-3.pt) |
| Swin-large-32-2 | 821.74 | 54.84 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/swin/onnx/swin32-2.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/swin/pt/swin32-2.pt) |
| Swin-large-48-1 | 821.78 | 55.66 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/swin/onnx/swin48-1.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/swin/pt/swin48-1.pt) |
| ResNet-i3d-16-3 | 146.43 | 32.86 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/resnet/onnx/resnet16-3.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/resnet/pt/resnet16-3.pt) |
| ResNet-i3d-32-2 | 146.43 | 38.38 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/resnet/onnx/resnet32-2.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/resnet/pt/resnet32-2.pt) |
| ResNet-i3d-48-1 | 146.43 | 43.91 | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/resnet/onnx/resnet48-1.onnx) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/resnet/pt/resnet48-1.pt) |## SignFlow models
| Model Name | Desc | ONNX | Params |
|------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------|
| SignFlow-A | **63.3 Top-1** Acc on [WLASL-2000](https://paperswithcode.com/sota/sign-language-recognition-on-wlasl-2000) (SOTA) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/SignFlow-A.onnx) | 36M |
| SignFlow-R | Pre-trained on **~50000** samples, has **267** classes, tested with GigaChat (as-is and context-based modes) | [weights](https://rndml-team-cv.obs.ru-moscow-1.hc.sbercloud.ru/datasets/slovo/models/SignFlow-R.onnx) | 37M |## Demo
```console
usage: demo.py [-h] -p CONFIG [--mp] [-v] [-l LENGTH]optional arguments:
-h, --help show this help message and exit
-p CONFIG, --config CONFIG
Path to config
--mp Enable multiprocessing
-v, --verbose Enable logging
-l LENGTH, --length LENGTH
Deque length for predictionspython demo.py -p
```![demo](images/demo.gif)
## Authors and Credits
- [Kapitanov Alexander](https://www.linkedin.com/in/hukenovs)
- [Kvanchiani Karina](https://www.linkedin.com/in/kvanchiani)
- [Nagaev Alexander](https://www.linkedin.com/in/nagadit/)
- [Petrova Elizaveta](https://www.linkedin.com/in/elizaveta-petrova-248135263/)## Citation
You can cite the paper using the following BibTeX entry:@inproceedings{kapitanov2023slovo,
title={Slovo: Russian Sign Language Dataset},
author={Kapitanov, Alexander and Karina, Kvanchiani and Nagaev, Alexander and Elizaveta, Petrova},
booktitle={International Conference on Computer Vision Systems},
pages={63--73},
year={2023},
organization={Springer}
}## Links
- [arXiv](https://arxiv.org/abs/2305.14527)
- [Kaggle](https://www.kaggle.com/datasets/kapitanov/slovo)
- [Habr](https://habr.com/ru/companies/sberdevices/articles/737018/)
- [Medium](https://medium.com/@nagadit/slovo-russian-sign-language-dataset-a8a8bd6fa17d)
- [Github](https://github.com/hukenovs/slovo)
- [Gitlab](https://gitlab.aicloud.sbercloud.ru/rndcv/slovo)
- [Paperswithcode](https://paperswithcode.com/paper/slovo-russian-sign-language-dataset)## License
This work is licensed under a variant of Creative Commons Attribution-ShareAlike 4.0 International License.Please see the specific [license](https://github.com/hukenovs/slovo/blob/master/license/en_us.pdf).