An open API service indexing awesome lists of open source software.

https://github.com/hunglc007/tensorflow-yolov4-tflite

YOLOv4, YOLOv4-tiny, YOLOv3, YOLOv3-tiny Implemented in Tensorflow 2.0, Android. Convert YOLO v4 .weights tensorflow, tensorrt and tflite
https://github.com/hunglc007/tensorflow-yolov4-tflite

android object-detection tensorflow tensorrt tf2 tflite yolov3 yolov3-tiny yolov4

Last synced: 1 day ago
JSON representation

YOLOv4, YOLOv4-tiny, YOLOv3, YOLOv3-tiny Implemented in Tensorflow 2.0, Android. Convert YOLO v4 .weights tensorflow, tensorrt and tflite

Awesome Lists containing this project

README

        

# tensorflow-yolov4-tflite
[![license](https://img.shields.io/github/license/mashape/apistatus.svg)](LICENSE)

YOLOv4, YOLOv4-tiny Implemented in Tensorflow 2.0.
Convert YOLO v4, YOLOv3, YOLO tiny .weights to .pb, .tflite and trt format for tensorflow, tensorflow lite, tensorRT.

Download yolov4.weights file: https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT

### Prerequisites
* Tensorflow 2.3.0rc0

### Performance

### Demo

```bash
# Convert darknet weights to tensorflow
## yolov4
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4-416 --input_size 416 --model yolov4

## yolov4-tiny
python save_model.py --weights ./data/yolov4-tiny.weights --output ./checkpoints/yolov4-tiny-416 --input_size 416 --model yolov4 --tiny

# Run demo tensorflow
python detect.py --weights ./checkpoints/yolov4-416 --size 416 --model yolov4 --image ./data/kite.jpg

python detect.py --weights ./checkpoints/yolov4-tiny-416 --size 416 --model yolov4 --image ./data/kite.jpg --tiny

```
If you want to run yolov3 or yolov3-tiny change ``--model yolov3`` in command

#### Output

##### Yolov4 original weight

##### Yolov4 tflite int8

### Convert to tflite

```bash
# Save tf model for tflite converting
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4-416 --input_size 416 --model yolov4 --framework tflite

# yolov4
python convert_tflite.py --weights ./checkpoints/yolov4-416 --output ./checkpoints/yolov4-416.tflite

# yolov4 quantize float16
python convert_tflite.py --weights ./checkpoints/yolov4-416 --output ./checkpoints/yolov4-416-fp16.tflite --quantize_mode float16

# yolov4 quantize int8
python convert_tflite.py --weights ./checkpoints/yolov4-416 --output ./checkpoints/yolov4-416-int8.tflite --quantize_mode int8 --dataset ./coco_dataset/coco/val207.txt

# Run demo tflite model
python detect.py --weights ./checkpoints/yolov4-416.tflite --size 416 --model yolov4 --image ./data/kite.jpg --framework tflite
```
Yolov4 and Yolov4-tiny int8 quantization have some issues. I will try to fix that. You can try Yolov3 and Yolov3-tiny int8 quantization
### Convert to TensorRT
```bash# yolov3
python save_model.py --weights ./data/yolov3.weights --output ./checkpoints/yolov3.tf --input_size 416 --model yolov3
python convert_trt.py --weights ./checkpoints/yolov3.tf --quantize_mode float16 --output ./checkpoints/yolov3-trt-fp16-416

# yolov3-tiny
python save_model.py --weights ./data/yolov3-tiny.weights --output ./checkpoints/yolov3-tiny.tf --input_size 416 --tiny
python convert_trt.py --weights ./checkpoints/yolov3-tiny.tf --quantize_mode float16 --output ./checkpoints/yolov3-tiny-trt-fp16-416

# yolov4
python save_model.py --weights ./data/yolov4.weights --output ./checkpoints/yolov4.tf --input_size 416 --model yolov4
python convert_trt.py --weights ./checkpoints/yolov4.tf --quantize_mode float16 --output ./checkpoints/yolov4-trt-fp16-416
```

### Evaluate on COCO 2017 Dataset
```bash
# run script in /script/get_coco_dataset_2017.sh to download COCO 2017 Dataset
# preprocess coco dataset
cd data
mkdir dataset
cd ..
cd scripts
python coco_convert.py --input ./coco/annotations/instances_val2017.json --output val2017.pkl
python coco_annotation.py --coco_path ./coco
cd ..

# evaluate yolov4 model
python evaluate.py --weights ./data/yolov4.weights
cd mAP/extra
python remove_space.py
cd ..
python main.py --output results_yolov4_tf
```
#### mAP50 on COCO 2017 Dataset

| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 | 55.43 | 52.32 | |
| YoloV4 | 61.96 | 57.33 | |

### Benchmark
```bash
python benchmarks.py --size 416 --model yolov4 --weights ./data/yolov4.weights
```
#### TensorRT performance

| YoloV4 416 images/s | FP32 | FP16 | INT8 |
|---------------------|----------|----------|----------|
| Batch size 1 | 55 | 116 | |
| Batch size 8 | 70 | 152 | |

#### Tesla P100

| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 40.6 | 49.4 | 61.3 |
| YoloV4 FPS | 33.4 | 41.7 | 50.0 |

#### Tesla K80

| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 10.8 | 12.9 | 17.6 |
| YoloV4 FPS | 9.6 | 11.7 | 16.0 |

#### Tesla T4

| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 27.6 | 32.3 | 45.1 |
| YoloV4 FPS | 24.0 | 30.3 | 40.1 |

#### Tesla P4

| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | 20.2 | 24.2 | 31.2 |
| YoloV4 FPS | 16.2 | 20.2 | 26.5 |

#### Macbook Pro 15 (2.3GHz i7)

| Detection | 512x512 | 416x416 | 320x320 |
|-------------|---------|---------|---------|
| YoloV3 FPS | | | |
| YoloV4 FPS | | | |

### Traning your own model
```bash
# Prepare your dataset
# If you want to train from scratch:
In config.py set FISRT_STAGE_EPOCHS=0
# Run script:
python train.py

# Transfer learning:
python train.py --weights ./data/yolov4.weights
```
The training performance is not fully reproduced yet, so I recommended to use Alex's [Darknet](https://github.com/AlexeyAB/darknet) to train your own data, then convert the .weights to tensorflow or tflite.

### TODO
* [x] Convert YOLOv4 to TensorRT
* [x] YOLOv4 tflite on android
* [ ] YOLOv4 tflite on ios
* [x] Training code
* [x] Update scale xy
* [ ] ciou
* [ ] Mosaic data augmentation
* [x] Mish activation
* [x] yolov4 tflite version
* [x] yolov4 in8 tflite version for mobile

### References

* YOLOv4: Optimal Speed and Accuracy of Object Detection [YOLOv4](https://arxiv.org/abs/2004.10934).
* [darknet](https://github.com/AlexeyAB/darknet)

My project is inspired by these previous fantastic YOLOv3 implementations:
* [Yolov3 tensorflow](https://github.com/YunYang1994/tensorflow-yolov3)
* [Yolov3 tf2](https://github.com/zzh8829/yolov3-tf2)