https://github.com/hunkim/deep_architecture_genealogy
Deep Learning Architecture Genealogy Project
https://github.com/hunkim/deep_architecture_genealogy
Last synced: 7 months ago
JSON representation
Deep Learning Architecture Genealogy Project
- Host: GitHub
- URL: https://github.com/hunkim/deep_architecture_genealogy
- Owner: hunkim
- Created: 2017-11-04T22:04:20.000Z (about 8 years ago)
- Default Branch: master
- Last Pushed: 2021-02-14T04:24:09.000Z (almost 5 years ago)
- Last Synced: 2025-04-09T10:04:15.485Z (8 months ago)
- Language: Python
- Homepage: https://coggle.it/diagram/Wf5mYoJbsgABUF9P
- Size: 1.4 MB
- Stars: 1,218
- Watchers: 110
- Forks: 194
- Open Issues: 6
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
- Best-Audio-Classification-Resources-with-Deep-learning - Deep architecture genealogy - Genealogy of DL architectures (Other useful related lists and resources)
- awesome-deep-learning-music - Deep architecture genealogy - Genealogy of DL architectures (Other useful related lists and resources)
README
# Deep Architecture Genealogy
There are so many new models and architectures. If you find something interesting and worth paying attention to, please send us a pull requests (PR) and write issues.
`README.md` is automatically generated. Please send PRs on the `Neural Net Arch Genealogy.txt` file.
## Mindmap Coggle Link
https://coggle.it/diagram/Wf5mYoJbsgABUF9P

## Text Version
This is automatically generated. Please send a PR on the `Neural Net Arch Genealogy.txt` file.
* Reinforcement Learning Algorithms
* [A3C, '16.02.06](https://arxiv.org/abs/1602.01783)
* [DARLA, '17.07.26](https://arxiv.org/pdf/1707.08475.pdf)
* [ACTKR, '17.08.17](https://arxiv.org/pdf/1708.05144.pdf)
* [c51, '17.10.27](https://arxiv.org/pdf/1710.10044.pdf)
* CNN
* [AlexNet, '12.12](https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
* [VggNet, '14.09](https://arxiv.org/pdf/1409.1556.pdf)
* [GoogLeNet, '14.09](https://arxiv.org/abs/1409.4842)
* [ResNet, '15.12](https://arxiv.org/pdf/1512.03385v1.pdf)
* [DenseNet, '16.08](https://arxiv.org/pdf/1608.06993.pdf)
* [SENet: Squeeze-and-Excitation Networks, '17.09](https://arxiv.org/abs/1709.01507)
* Object Detection
* [R-CNN](https://arxiv.org/pdf/1311.2524.pdf)
* [Fast R-CNN](https://arxiv.org/pdf/1504.08083.pdf)
* [Faster R-CNN](https://arxiv.org/pdf/1506.01497.pdf)
* [Mask R-CNN](https://arxiv.org/pdf/1703.06870.pdf)
* [YOLO](https://arxiv.org/pdf/1506.02640.pdf)
* [SSD](https://arxiv.org/pdf/1512.02325.pdf)
* [R-FCN](https://arxiv.org/pdf/1605.06409.pdf)
* Semantic Segmentation
* [FCN](https://arxiv.org/pdf/1411.4038.pdf)
* [DeconvNet](https://arxiv.org/pdf/1505.04366.pdf)
* [DeepLab](https://arxiv.org/pdf/1606.00915.pdf)
* [U-Net](https://arxiv.org/pdf/1505.04597.pdf)
* Super-resolution
* [MemNet](https://arxiv.org/abs/1708.02209)
* [FSRCNN](https://arxiv.org/1608.00367)
* [SRCNN](https://arxiv.org/abs/1501.00092)
* [VDSR](https://arxiv.org/abs/1511.04587)
* [DRCN](https://arxiv.org/abs/1511.04491)
* [LabSRN](https://arxiv.org/abs/1704.03915)
* [EDSR](https://arxiv.org/abs/1707.02921)
* TTS
* [Wavenet, '16.09.12](https://arxiv.org/abs/1609.03499)
* Generative Models
* Autoregressive models
* [MADE, '15.02.12](https://arxiv.org/pdf/1502.03509.pdf)
* [PixelRNN, '16.01.25](https://arxiv.org/pdf/1601.06759.pdf)
* [NADE, '16.05.07](https://arxiv.org/pdf/1605.02226.pdf)
* [PixelCNN, '16.06.16](https://arxiv.org/pdf/1606.05328.pdf)
* [PixelCNN++, '17.01.19](https://arxiv.org/pdf/1701.05517.pdf)
* Latent variable models
* [VAE, '13.12.20](https://arxiv.org/pdf/1312.6114.pdf)
* [CVAE, '14.06.20](https://arxiv.org/pdf/1406.5298.pdf)
* [AAE, '15.11.18](https://arxiv.org/pdf/1511.05644.pdf)
* [AVB, '17.01.17](https://arxiv.org/pdf/1701.04722.pdf)
* [VQ-VAE, '17.11.2](https://arxiv.org/abs/1711.00937)
* [GAN, '14.06.10](https://arxiv.org/pdf/1406.2661.pdf)
* Variants
* [CGAN, '14.11.06](https://arxiv.org/pdf/1411.1784.pdf)
* [DCGAN, '15.11.19](https://arxiv.org/pdf/1511.06434.pdf)
* [infoGAN, '16.06.12](https://arxiv.org/pdf/1704.00028.pdf)
* [EBGAN, '16.09.11](https://arxiv.org/pdf/1609.03126.pdf)
* [ACGAN, '16.10.30](https://arxiv.org/pdf/1610.09585.pdf)
* [WGAN, '17.01.26](https://arxiv.org/pdf/1701.07875.pdf)
* [BEGAN, '17.02.27](https://arxiv.org/pdf/1702.08431.pdf)
* [WGAN-GP, '17.03.31](https://arxiv.org/pdf/1704.00028.pdf)
* [TripleGAN, '17.03.07](https://arxiv.org/pdf/1703.02291.pdf)
* Applications
* [Pix2Pix, '16.11.21](https://arxiv.org/pdf/1611.07004v1.pdf)
* [PPGN, '16.11.30](https://arxiv.org/pdf/1612.00005.pdf)
* [StackGAN, '16.12.10](https://arxiv.org/pdf/1612.03242.pdf)
* RNN
* [LSTM, '97.11](http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735)
* [GRU, 14.11](https://arxiv.org/abs/1412.3555)
* [ACT: Adaptive Computation Time, '17.05](https://arxiv.org/abs/1603.08983)
* [S2S: RNN Encoder-Decoder, '14.06](https://arxiv.org/abs/1406.1078)
* [Attention: Jointly Learning to Align, '14.09](https://arxiv.org/abs/1409.0473)
* [Effective Approaches to Attention, Luong et al. '15.08](https://arxiv.org/abs/1508.04025)
* [DCN: Dynamic Coattention Networks, '16.08](https://arxiv.org/abs/1611.01604), [DCN+, '17.08](https://arxiv.org/abs/1711.00106)
* [Transformer: Attention Is All You Need, '17.06](https://arxiv.org/abs/1706.03762)
* [Capsule Net, '17.10](https://arxiv.org/abs/1710.09829)
* Memory Networks
* Neural Programming
* [Neural Turing Machine,'14.10](https://arxiv.org/pdf/1410.5401.pdf)
* [Neural Random-Access Machines,'16.02](https://arxiv.org/pdf/1511.06392.pdf)
* [Hierarchical Attentive Memory, '16.02](https://arxiv.org/abs/1602.03218)
* [Neural GPUs Learn Algorithms, '16.03](https://arxiv.org/pdf/1511.08228.pdf)
* [Neural Programmer,'16.08](https://arxiv.org/pdf/1511.04834.pdf)
* [Neural Module Networks, '16.06](https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Andreas_Neural_Module_Networks_CVPR_2016_paper.html)
* [Hybrid Computing, '16.10](https://www.nature.com/nature/journal/v538/n7626/full/nature20101.html)
* [Memory Networks,'14.10](https://arxiv.org/pdf/1410.3916.pdf)
* [End-to-End Memory Network,'15.03](https://arxiv.org/pdf/1503.08895.pdf)
* [DMN: Dynamic Memory Network, '16.03](https://arxiv.org/pdf/1506.07285.pdf), [DMN+, '16.04 ](https://arxiv.org/pdf/1603.01417.pdf)
## Contributions
Your pull requests and issues are always welcome.