An open API service indexing awesome lists of open source software.

https://github.com/hunkim/googlecloudmlexamples


https://github.com/hunkim/googlecloudmlexamples

Last synced: 8 months ago
JSON representation

Awesome Lists containing this project

README

          

# Google Cloud ML Examples

## Slides and Videos
* [Google Cloud ML Slides](/Google Cloud ML.pdf)
* [Google Cloud ML Video](https://youtu.be/EIRD3HAp-QQ)
* [Google Cloud ML Video (KOREAN)](https://youtu.be/8Jkz2HexDAM)

## Simple multiplication (train.1-multiply)

### Run locally:
```bash
python -m train.1-multiply
```

### Run in ClouldML
Set variables

```bash
JOB_NAME=

JOB_NAME="task8"

PROJECT_ID=`gcloud config list project --format "value(core.project)"`
STAGING_BUCKET=gs://${PROJECT_ID}-ml
```

Submit a job

```bash
gcloud beta ml jobs submit training ${JOB_NAME} \
--package-path=train \
--staging-bucket="${STAGING_BUCKET}" \
--module-name=train.1-multiply
```

## Read input.csv from Google Storage (train.2-input)

### Run locally:
```bash
python -m train.2-input
```

### Run in ClouldML
Set variables

```bash
JOB_NAME="task8"

PROJECT_ID=`gcloud config list project --format "value(core.project)"`
STAGING_BUCKET=gs://${PROJECT_ID}-ml
INPUT_PATH=${STAGING_BUCKET}/input
```

Copy input.csv to Google Storage
```bash
gsutil cp input/input.csv $INPUT_PATH/input.csv
```

Submit a job

```bash
gcloud beta ml jobs submit training ${JOB_NAME} \
--package-path=train \
--staging-bucket="${STAGING_BUCKET}" \
--module-name=train.2-input \
-- --input_dir="${INPUT_PATH}"
```

## Write checkpoint files to Google Storage (train.3-output)

### Run locally:
```bash
python -m train.3-output
```

### Run in CloudML
Set variables
```bash
JOB_NAME="task20"
PROJECT_ID=`gcloud config list project --format "value(core.project)"`
STAGING_BUCKET=gs://${PROJECT_ID}-ml
OUTPUT_PATH=${STAGING_BUCKET}/output/
```

Create the output folder
(Copy an empty file to the GS path with trailing slash, `/`)
```bash
gsutil cp /dev/null $OUTPUT_PATH
```

Submit a job

```bash
gcloud beta ml jobs submit training ${JOB_NAME} \
--package-path=train \
--staging-bucket="${STAGING_BUCKET}" \
--module-name=train.3-output \
-- --output_dir="${OUTPUT_PATH}"
```

## Contributions/Comments
We always welcome your contributions/comments. Use the [Issues](https://github.com/hunkim/GoogleClouldMLExamples/issues).