Ecosyste.ms: Awesome

An open API service indexing awesome lists of open source software.

Awesome Lists | Featured Topics | Projects

https://github.com/huntzhan/pytorch-fast-elmo

A Fast ELMo Implementation. (NOT MAINTAIN ANYMORE)
https://github.com/huntzhan/pytorch-fast-elmo

Last synced: 3 months ago
JSON representation

A Fast ELMo Implementation. (NOT MAINTAIN ANYMORE)

Awesome Lists containing this project

README

        

=================
pytorch-fast-elmo
=================

.. image:: https://img.shields.io/pypi/v/pytorch_fast_elmo.svg
:target: https://pypi.python.org/pypi/pytorch_fast_elmo

.. image:: https://img.shields.io/travis/cnt-dev/pytorch-fast-elmo.svg
:target: https://travis-ci.org/cnt-dev/pytorch-fast-elmo

.. image:: https://img.shields.io/badge/License-MIT-yellow.svg
:target: https://travis-ci.org/cnt-dev/pytorch-fast-elmo

Introduction
------------

A fast ELMo implementation with features:

- **Lower execution overhead.** The core components are reimplemented in Libtorch in order to reduce the Python execution overhead (**45%** speedup).
- **A more flexible design.** By redesigning the workflow, the user could extend or change the ELMo behavior easily.

Benchmark
---------

Hardware:

- CPU: i7-7800X
- GPU: 1080Ti

Options:

- Batch size: 32
- Warm up iterations: 20
- Test iterations: 1000
- Word length: [1, 20]
- Sentence length: [1, 30]
- Random seed: 10000

+--------------------------------------+------------------------+------------------------+
| Item | Mean Of Durations (ms) | cumtime(synchronize)% |
+======================================+========================+========================+
| Fast ELMo (CUDA, no synchronize) | **31** | N/A |
+--------------------------------------+------------------------+------------------------+
| AllenNLP ELMo (CUDA, no synchronize) | 56 | N/A |
+--------------------------------------+------------------------+------------------------+
| Fast ELMo (CUDA, synchronize) | 47 | **26.13%** |
+--------------------------------------+------------------------+------------------------+
| AllenNLP ELMo (CUDA, synchronize) | 57 | 0.02% |
+--------------------------------------+------------------------+------------------------+
| Fast ELMo (CPU) | 1277 | N/A |
+--------------------------------------+------------------------+------------------------+
| AllenNLP ELMo (CPU) | 1453 | N/A |
+--------------------------------------+------------------------+------------------------+

Usage
-----

Please install **torch==1.0.0** first. Then, simply run this command to install.

.. code-block:: bash

pip install pytorch-fast-elmo

``FastElmo`` should have the same behavior as AllenNLP's ``ELMo``.

.. code-block:: python

from pytorch_fast_elmo import FastElmo, batch_to_char_ids

options_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_options.json'
weight_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5'

elmo = FastElmo(options_file, weight_file)

sentences = [['First', 'sentence', '.'], ['Another', '.']]
character_ids = batch_to_ids(sentences)

embeddings = elmo(character_ids)

Use ``FastElmoWordEmbedding`` if you have disabled ``char_cnn`` in ``bilm-tf``, or have exported the Char CNN representation to a weight file.

.. code-block:: python

from pytorch_fast_elmo import FastElmoWordEmbedding, load_and_build_vocab2id, batch_to_word_ids

options_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_options.json'
weight_file = '/path/to/elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5'

vocab_file = '/path/to/vocab.txt'
embedding_file = '/path/to/cached_elmo_embedding.hdf5'

elmo = FastElmoWordEmbedding(
options_file,
weight_file,
# Could be omitted if the embedding weight is in `weight_file`.
word_embedding_weight_file=embedding_file,
)
vocab2id = load_and_build_vocab2id(vocab_file)

sentences = [['First', 'sentence', '.'], ['Another', '.']]
word_ids = batch_to_word_ids(sentences, vocab2id)

embeddings = elmo(word_ids)

CLI commands:

.. code-block:: bash

# Cache the Char CNN representation.
fast-elmo cache-char-cnn ./vocab.txt ./options.json ./lm_weights.hdf5 ./lm_embd.hdf5

# Export word embedding.
fast-elmo export-word-embd ./vocab.txt ./no-char-cnn.hdf5 ./embd.txt

Credits
-------

This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.

.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage