Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hupe1980/tmac
Agile Threat Modeling as Code
https://github.com/hupe1980/tmac
agile appsec cybersecurity devsecops jupyter-notebook openthreatmodel threat-modeling threatbook threatmodeling
Last synced: 27 days ago
JSON representation
Agile Threat Modeling as Code
- Host: GitHub
- URL: https://github.com/hupe1980/tmac
- Owner: hupe1980
- License: mit
- Created: 2022-12-17T23:53:08.000Z (about 2 years ago)
- Default Branch: main
- Last Pushed: 2023-01-03T12:50:48.000Z (almost 2 years ago)
- Last Synced: 2024-11-15T04:54:08.813Z (about 2 months ago)
- Topics: agile, appsec, cybersecurity, devsecops, jupyter-notebook, openthreatmodel, threat-modeling, threatbook, threatmodeling
- Language: Python
- Homepage:
- Size: 2.49 MB
- Stars: 1
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# tmac
> Agile Threat Modeling as Code
- Close to the code - close to developers## Install
```bash
pip install tmac
```## How to use
```bash
python3 tmac.py
``````python
#!/usr/bin/env python3from tmac import (
Model,
Process,
Protocol,
Score,
TableFormat,
Technology,
TrustBoundary,
)
from tmac.plus import Browser, Databasemodel = Model("Demo Model", description="Sample description")
internet = TrustBoundary(model, "Internet")
dmz = TrustBoundary(model, "DMZ")
intranet = TrustBoundary(model, "Intranet")browser = Browser(model, "Browser", trust_boundary=internet)
web_server = Process(
model,
"WebServer",
technology=Technology.WEB_APPLICATION,
trust_boundary=dmz,
)database = Database(
model,
"Database",
trust_boundary=intranet,
)web_traffic = browser.add_data_flow(
"WebTraffic",
destination=web_server,
protocol=Protocol.HTTPS,
)web_traffic.transfers(
"UserCredentials",
confidentiality=Score.HIGH,
integrity=Score.HIGH,
availability=Score.HIGH,
)database_traffic = web_server.add_data_flow(
"DatabaseTraffic",
destination=database,
protocol=Protocol.SQL,
)database_traffic.transfers(
"UserDetails",
confidentiality=Score.HIGH,
integrity=Score.HIGH,
availability=Score.HIGH,
)print(model.risks_table(table_format=TableFormat.GITHUB))
```
Output:
| ID | Category | Risk | Treatment |
|------------------------------------|-------------------------|---------------------------------------------------------------------------------|-------------|
| CAPEC-62@WebServer@WebTraffic | Subvert Access Control | Cross-Site Request Forgery (CSRF) risk at WebServer via WebTraffic from Browser | in-progress |
| CAPEC-63@WebServer | Inject Unexpected Items | Cross-Site Scripting (XSS) risk at WebServer | accepted |
| CAPEC-66@WebServer@DatabaseTraffic | Inject Unexpected Items | SQL Injection risk at WebServer against database Database via DatabaseTraffic | mitigated |
|...|...|...|...|
```python
print(model.create_backlog_table(table_format=TableFormat.GITHUB))
```
Output:
| ID | Category | User Story | State |
|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ASVS-13.2.3@CAPEC-62@WebServer@WebTraffic | RESTful Web Service | Verify that RESTful web services that utilize cookies are protected from Cross-Site Request Forgery via the use of at least one or more of the following: double submit cookie pattern, CSRF nonces, or Origin request header checks. | draft |
| ASVS-5.3.5@CAPEC-66@WebServer@DatabaseTraffic | Output Encoding and Injection Prevention | Verify that where parameterized or safer mechanisms are not present, context-specific output encoding is used to protect against injection attacks, such as the use of SQL escaping to protect against SQL injection. | closed |
| ASVS-1.2.3@CAPEC-62@WebServer@WebTraffic | Authentication Architecture | Verify that the application uses a single vetted authentication mechanism that is known to be secure, can be extended to include strong authentication, and has sufficient logging and monitoring to detect account abuse or breaches. | in-progress |
|...|...|...|...|
## Jupyter Threatbooks
> Threat modeling with jupyter notebooks![threatbook.png](https://github.com/hupe1980/tmac/raw/main/.assets/threatbook.png)
## Generating Diagrams
```python
model.create_data_flow_diagram()
```
![threatbook.png](https://github.com/hupe1980/tmac/raw/main/.assets/data-flow-diagram.png)## High level elements (tmac/plus*)
```python
from tmac.plus_aws import ApplicationLoadBalancer# ...
alb = ApplicationLoadBalancer(model, "ALB", waf=True)
```
## Custom ThreatLibrary
```python
from tmac import Model, ThreatLibrarylib = ThreatLibrary()
lib.add_threat("""... your custom threats ...""")
model = Model("Demo Model", threat_library=lib)
```
## ExamplesSee more complete [examples](https://github.com/hupe1980/tmac/tree/master/examples).
## Prior work and other related projects
- [pytm](https://github.com/izar/pytm) - A Pythonic framework for threat modeling
- [threagile](https://github.com/Threagile/threagile) - Agile Threat Modeling Toolkit
- [cdk-threagile](https://github.com/hupe1980/cdk-threagile) - Agile Threat Modeling as Code
- [OpenThreatModel](https://github.com/iriusrisk/OpenThreatModel) - OpenThreatModel## License
[MIT](LICENSE)