Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hustvl/hdr-hexplane
3DV 2024: Fast High Dynamic Range Radiance Fields for Dynamic Scenes
https://github.com/hustvl/hdr-hexplane
hdr-image nerf neuralrendering reconstruction
Last synced: 3 days ago
JSON representation
3DV 2024: Fast High Dynamic Range Radiance Fields for Dynamic Scenes
- Host: GitHub
- URL: https://github.com/hustvl/hdr-hexplane
- Owner: hustvl
- License: mit
- Created: 2023-10-03T14:21:06.000Z (about 1 year ago)
- Default Branch: master
- Last Pushed: 2024-08-09T07:04:03.000Z (3 months ago)
- Last Synced: 2024-08-09T08:28:29.001Z (3 months ago)
- Topics: hdr-image, nerf, neuralrendering, reconstruction
- Language: Python
- Homepage: https://guanjunwu.github.io/HDR-HexPlane
- Size: 13.1 MB
- Stars: 26
- Watchers: 3
- Forks: 1
- Open Issues: 0
-
Metadata Files:
- Readme: README.md
- License: LICENSE
Awesome Lists containing this project
README
# HDR-HexPlane: Fast High Dynamic Range Radiance Fields for Dynamic Scenes
## 3DV 2024
### [Project Page](https://guanjunwu.github.io/HDR-HexPlane/) | [Data(BaiduYun)](https://pan.baidu.com/s/1vuJ5kThgRkmv9DWis9g8Pg?pwd=1234) | [Data(Blender Files)](https://drive.google.com/drive/folders/19eTjvgw98_hYodCMegHHg5PjhNUgFVNO?usp=sharing)| [Data(Images)](https://huggingface.co/datasets/SmallGuanjun/HDR-HexPlane) |[Paper](https://arxiv.org/abs/2401.06052)[Guanjun Wu](https://guanjunwu.github.io/) 1*, [Taoran Yi](https://github.com/taoranyi) 2*,
[Jiemin Fang](https://jaminfong.cn/) 2‡, [Wenyu Liu](http://eic.hust.edu.cn/professor/liuwenyu/) 2, [Xinggang Wang](https://xwcv.github.io) 2‡✉1 School of CS, HUST 2 School of EIC, HUST
\* Equal Contributions. $\ddagger$ Project Lead. ✉ Corresponding Author.
---
We propose a dynamic HDR NeRF framework, named as HDR-HexPlane, which can learn 3D scenes from dynamic 2D images captured with various exposures. We further construct a dataset containing multiple dynamic scenes captured with diverse exposures for evaluation.
![image](docs/framework.jpg)
# Environment Setup
```
# create conda environment
conda create --name hdrhexplane python=3.9# pip install
pip install -r requirements.txt
```# Data Preparation
Please download all the data from the [link](https://drive.google.com/drive/folders/19eTjvgw98_hYodCMegHHg5PjhNUgFVNO?usp=sharing):
Make the dataset format like: `dataset/lego`.
Please change the "datadir" in config based on the locations of downloaded datasets.
# Reconstruction
```
python main.py config=config/dnerf_slim_tank.yaml
```We provide several config files under [config](config/) folder for different datasets and models.
# Evaluation
With `render_test=True`, `render_path=True`, results at test viewpoint are automatically evaluated and validation viewpoints are generated after reconstruction.
```
python main.py config=config/dnerf_slim_airplane.yaml systems.ckpt="checkpoint/path" render_only=True
```# Citation
Some insights about neural voxel grids and dynamic scenes reconstruction originate from [TiNeuVox](https://github.com/hustvl/TiNeuVox) and [hexplane](https://github.com/Caoang327/HexPlane). If you find this repository/work helpful in your research, welcome to cite these papers and give a ⭐.
```
@inproceedings{wu2024fast,
title={Fast High Dynamic Range Radiance Fields for Dynamic Scenes},
author={Wu, Guanjun and Yi, Taoran and Fang, Jiemin and Liu, Wenyu and Wang, Xinggang},
booktitle={2024 International Conference on 3D Vision (3DV)},
pages={862--872},
year={2024},
organization={IEEE}
}
```# Acknowledgement
Our code is hugely influenced by [hexplane](https://github.com/Caoang327/HexPlane) and many other projects. We would like to acknowledge them for making great code openly available for us to use. **All the datasets are provided for academic studies only.**