Ecosyste.ms: Awesome
An open API service indexing awesome lists of open source software.
https://github.com/hycis/unilever_pred
This repo for the unilever product score prediction competition
https://github.com/hycis/unilever_pred
Last synced: 4 days ago
JSON representation
This repo for the unilever product score prediction competition
- Host: GitHub
- URL: https://github.com/hycis/unilever_pred
- Owner: hycis
- Created: 2014-12-29T06:41:24.000Z (about 10 years ago)
- Default Branch: master
- Last Pushed: 2015-04-23T10:15:54.000Z (over 9 years ago)
- Last Synced: 2024-12-27T14:39:27.792Z (20 days ago)
- Language: Python
- Size: 609 KB
- Stars: 0
- Watchers: 3
- Forks: 0
- Open Issues: 1
-
Metadata Files:
- Readme: README.md
Awesome Lists containing this project
README
# unilever_pred
This repo for the unilever product score prediction competition__Things To Do__
1. Find the best number of top features using cross-validation
2. Find the best number of estimators and learning rate for GradientBoostingRegressor using cross-validation# TODO: how to interpolate test data?
# TODO: check out the feature weights
# TODO: recursive feature elimination
# TODO: do the avg plots and auto-detect gradient
# TODO: interpolatio by label
# TODO: which ingredient correlate with which attribute
# TODO: correlation with OO scoreTest Labels
===========
135,6
2212,6
test size=2525=======
Model ID | Model | Cross-Validation Score | Test Score | Remarks | Features
---------|------ | ---------------------- | ---------- | --------| --------
| GradientBoostingRegressor | | 0.222446 | Learning-rate = 0.1, n_estimators = 100 | [158:]
| GradientBoostingRegressor | | 0.221658 | Learning-rate = 0.1, n_estimators = 100 | [1:]
| GradientBoostingRegressor | | 0.218353 | Learning-rate = 0.1, n_estimators = 100-140, max-depth=5 or 10 | top 101 features
| GradientBoostingRegressor | | 0.217173 | Learning-rate = 0.08, n_estimators = 100-140, max-depth=5,7,9 | na_Zero,no_ingre_prob
| GradientBoostingRegressor | | 0.21678 | Learning-rate = 0.08, n_estimators = 140, max-depth=7 | na_Zero,no_ingre_prob
| GradientBoostingRegressor | | 0.21366 | learning_rate=0.07, n_estimators=200, max-depth=6 | na_zero,no_ingre_prob
| GradientBoostingRegressor | | 0.212674 | learning_rate=0.07, n_estimators=280, max-depth=6 | na_zero,no_ingre_prob
| GradientBoostingRegressor | | 0.212533 | learning_rate=0.07, n_estimators=380, max-depth=6 | na_zero,no_ingre_prob
| GradientBoostingRegressor | | 0.222446 | Learning-rate = 0.1, n_estimators = 100 | [158:]
| GradientBoostingRegressor | | 0.221658 | Learning-rate = 0.1, n_estimators = 100 | [1:]
| AverageModel | 0.195236 | 0.222848 | Average of rfr, etr, gbr, br, br | [158:]
| AverageModel | 0.196189 | | Average of rfr, etr, gbr, br, br(br) | Top 50
| AverageModel | 0.192408 | 0.221837 | Average of rfr, etr, gbr, br, br, svr | Top 50
| AverageModel | 0.192768 | | Average of rfr, gbr, br, br, svr | Top 50
| AverageModel | 0.191267 | 0.218865 | Average of rfr, etr, svr, gbr, br, br(gbr), br(gbr) | Top 50
ave_model1 | AverageMode | 0.1896 | 0.21511 | | Top 100Phase 2: MSE
Rank
Model| CV score | Pub Score | Params
-----|-----------|-----------|--------
RF | | .483824 | max_depth=4_max_features=15_n_estimators=350
RF | | .4103 | max_depth=5_max_features=15_n_estimators=250
RF | | .398529 | max_depth=5_max_features=12_n_estimators=210
RF | | .397794 | max_depth=5_max_features=12_n_estimators=210 and max_depth=5_max_features=15_n_estimators=250Model| CV score | Pub Score | Params
-----|-----------|-----------|--------
GBR | | 0.5156 | learning_rate=0.05_max_depth=2_n_estimators=200
GBR | | 0.5153 | learning_rate=0.05_max_depth=2_n_estimators=150
GBR | | 0.5152 | learning_rate=0.04_max_depth=2_n_estimators=140