An open API service indexing awesome lists of open source software.

https://github.com/hyperf/qdrant-client


https://github.com/hyperf/qdrant-client

Last synced: 10 months ago
JSON representation

Awesome Lists containing this project

README

          

# Hyperf Qdrant Client

## Install
```bash
composer require hyperf/qdrant-client
```

## Usage

An example to create a collection:
```php
use App\VectorStore\Qdrant\Config;
use Hyperf\Qdrant\Api\Collections;
use Hyperf\Qdrant\Api\Points;
use Hyperf\Qdrant\Connection\HttpClient;
use Hyperf\Qdrant\Struct\Collections\Enums\Distance;
use Hyperf\Qdrant\Struct\Collections\VectorParams;
use Hyperf\Qdrant\Struct\Points\ExtendedPointId;
use Hyperf\Qdrant\Struct\Points\Point\PointStruct;
use Hyperf\Qdrant\Struct\Points\SearchCondition\FieldCondition;
use Hyperf\Qdrant\Struct\Points\SearchCondition\Filter;
use Hyperf\Qdrant\Struct\Points\SearchCondition\Match\MatchValue;
use Hyperf\Qdrant\Struct\Points\VectorStruct;

$client = new HttpClient(new Config(...));

$collections = new Collections($client);
$collections->createCollection('test_collection', new VectorParams(1536, Distance::COSINE));

# insert vector data
$points = new Points($client);
$points->setWait(true);
$points->upsertPoints('test_collection', [
new PointStruct(
new ExtendedPointId($key + 10000),
new VectorStruct($data['embeddings'][0]),
[
# payload
'name' => $data['name'],
'description' => $data['description'],
'image' => $data['image'],
],
),
]);

# similarity search
$result = $points->searchPoints(
'test_collection',
new VectorStruct($data['embeddings'][0]),
3,
withPayload: new WithPayload(true),
);
print_r($result);

# payload filter
$result = $points->searchPoints(
'test_collection',
new VectorStruct($data['embeddings'][0]),
3,
new Filter(
must: [
new FieldCondition('name', new MatchValue('qdrant')),
]
),
withPayload: new WithPayload(true),
);
print_r($result);
```