An open API service indexing awesome lists of open source software.

https://github.com/hyriver/pygeoutils

A part of HyRiver software stack for handling geospatial data manipulations
https://github.com/hyriver/pygeoutils

geodata geospatial hydrology python webservices

Last synced: 6 days ago
JSON representation

A part of HyRiver software stack for handling geospatial data manipulations

Awesome Lists containing this project

README

          

.. image:: https://raw.githubusercontent.com/hyriver/HyRiver-examples/main/notebooks/_static/pygeoutils_logo.png
:target: https://github.com/hyriver/HyRiver

|

.. image:: https://joss.theoj.org/papers/b0df2f6192f0a18b9e622a3edff52e77/status.svg
:target: https://joss.theoj.org/papers/b0df2f6192f0a18b9e622a3edff52e77
:alt: JOSS

|

.. |pygeohydro| image:: https://github.com/hyriver/pygeohydro/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygeohydro/actions/workflows/test.yml
:alt: Github Actions

.. |pygeoogc| image:: https://github.com/hyriver/pygeoogc/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygeoogc/actions/workflows/test.yml
:alt: Github Actions

.. |pygeoutils| image:: https://github.com/hyriver/pygeoutils/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygeoutils/actions/workflows/test.yml
:alt: Github Actions

.. |pynhd| image:: https://github.com/hyriver/pynhd/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pynhd/actions/workflows/test.yml
:alt: Github Actions

.. |py3dep| image:: https://github.com/hyriver/py3dep/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/py3dep/actions/workflows/test.yml
:alt: Github Actions

.. |pydaymet| image:: https://github.com/hyriver/pydaymet/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pydaymet/actions/workflows/test.yml
:alt: Github Actions

.. |pygridmet| image:: https://github.com/hyriver/pygridmet/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pygridmet/actions/workflows/test.yml
:alt: Github Actions

.. |pynldas2| image:: https://github.com/hyriver/pynldas2/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/pynldas2/actions/workflows/test.yml
:alt: Github Actions

.. |async| image:: https://github.com/hyriver/async-retriever/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/async-retriever/actions/workflows/test.yml
:alt: Github Actions

.. |signatures| image:: https://github.com/hyriver/hydrosignatures/actions/workflows/test.yml/badge.svg
:target: https://github.com/hyriver/hydrosignatures/actions/workflows/test.yml
:alt: Github Actions

================ ====================================================================
Package Description
================ ====================================================================
PyNHD_ Navigate and subset NHDPlus (MR and HR) using web services
Py3DEP_ Access topographic data through National Map's 3DEP web service
PyGeoHydro_ Access NWIS, NID, WQP, eHydro, NLCD, CAMELS, and SSEBop databases
PyDaymet_ Access daily, monthly, and annual climate data via Daymet
PyGridMET_ Access daily climate data via GridMET
PyNLDAS2_ Access hourly NLDAS-2 data via web services
HydroSignatures_ A collection of tools for computing hydrological signatures
AsyncRetriever_ High-level API for asynchronous requests with persistent caching
PyGeoOGC_ Send queries to any ArcGIS RESTful-, WMS-, and WFS-based services
PyGeoUtils_ Utilities for manipulating geospatial, (Geo)JSON, and (Geo)TIFF data
================ ====================================================================

.. _PyGeoHydro: https://github.com/hyriver/pygeohydro
.. _AsyncRetriever: https://github.com/hyriver/async-retriever
.. _PyGeoOGC: https://github.com/hyriver/pygeoogc
.. _PyGeoUtils: https://github.com/hyriver/pygeoutils
.. _PyNHD: https://github.com/hyriver/pynhd
.. _Py3DEP: https://github.com/hyriver/py3dep
.. _PyDaymet: https://github.com/hyriver/pydaymet
.. _PyGridMET: https://github.com/hyriver/pygridmet
.. _PyNLDAS2: https://github.com/hyriver/pynldas2
.. _HydroSignatures: https://github.com/hyriver/hydrosignatures

PyGeoUtils: Utilities for (Geo)JSON and (Geo)TIFF Conversion
------------------------------------------------------------

.. image:: https://img.shields.io/pypi/v/pygeoutils.svg
:target: https://pypi.python.org/pypi/pygeoutils
:alt: PyPi

.. image:: https://img.shields.io/conda/vn/conda-forge/pygeoutils.svg
:target: https://anaconda.org/conda-forge/pygeoutils
:alt: Conda Version

.. image:: https://codecov.io/gh/hyriver/pygeoutils/branch/main/graph/badge.svg
:target: https://codecov.io/gh/hyriver/pygeoutils
:alt: CodeCov

.. image:: https://img.shields.io/pypi/pyversions/pygeoutils.svg
:target: https://pypi.python.org/pypi/pygeoutils
:alt: Python Versions

.. image:: https://static.pepy.tech/badge/pygeoutils
:target: https://pepy.tech/project/pygeoutils
:alt: Downloads

|

.. image:: https://www.codefactor.io/repository/github/hyriver/pygeoutils/badge
:target: https://www.codefactor.io/repository/github/hyriver/pygeoutils
:alt: CodeFactor

.. image:: https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json
:target: https://github.com/astral-sh/ruff
:alt: Ruff

.. image:: https://img.shields.io/badge/pre--commit-enabled-brightgreen?logo=pre-commit&logoColor=white
:target: https://github.com/pre-commit/pre-commit
:alt: pre-commit

.. image:: https://mybinder.org/badge_logo.svg
:target: https://mybinder.org/v2/gh/hyriver/HyRiver-examples/main?urlpath=lab/tree/notebooks
:alt: Binder

|

Features
--------

PyGeoUtils is a part of `HyRiver `__ software stack that
is designed to aid in hydroclimate analysis through web services. This package provides
utilities for manipulating (Geo)JSON and (Geo)TIFF responses from web services.
These utilities are:

- ``Coordinates``: Generate validated and normalized coordinates in WGS84.
- ``GeoBSpline``: Create B-spline from a ``geopandas.GeoDataFrame`` of points.
- ``smooth_linestring``: Smooth a ``shapely.geometry.LineString`` using B-spline.
- ``bspline_curvature``: Compute tangent angles, curvature, and radius of curvature
of a B-Spline at any points along the curve.
- ``arcgis2geojson``: Convert ESRIGeoJSON format to GeoJSON.
- ``break_lines``: Break lines at specified points in a given direction.
- ``gtiff2xarray``: Convert (Geo)Tiff byte responses to ``xarray.Dataset``.
- ``json2geodf``: Create ``geopandas.GeoDataFrame`` from (Geo)JSON responses
- ``snap2nearest``: Find the nearest points on a line to a set of points.
- ``xarray2geodf``: Vectorize a ``xarray.DataArray`` to a ``geopandas.GeoDataFrame``.
- ``geodf2xarray``: Rasterize a ``geopandas.GeoDataFrame`` to a ``xarray.DataArray``.
- ``xarray_geomask``: Mask a ``xarray.Dataset`` based on a geometry.
- ``query_indices``: A wrapper around
``geopandas.sindex.query_bulk``. However, instead of returning an array of
positional indices, it returns a dictionary of indices where keys are the
indices of the input geometry and values are a list of indices of the
tree geometries that intersect with the input geometry.
- ``nested_polygons``: Determining nested (multi)polygons in a
``geopandas.GeoDataFrame``.
- ``multi2poly``: For converting a ``MultiPolygon`` to a ``Polygon``
in a ``geopandas.GeoDataFrame``.
- ``geometry_reproject``: For reprojecting a geometry
(bounding box, list of coordinates, or any ``shapely.geometry``) to
a new CRS.
- ``gtiff2vrt``: For converting a list of GeoTIFF files to a VRT file.
- ``sample_window``: Sample a raster dataset at specified coordinates
using a window size and a ``rasterio`` supported resampling method.
This is an efficient way of sampling large raster datasets without
reading the entire dataset into memory. The function returns a generator
that yields the sampled values in the order of the input coordinates.

You can find some example notebooks `here `__.

You can also try using PyGeoUtils without installing
it on your system by clicking on the binder badge. A Jupyter Lab
instance with the HyRiver stack pre-installed will be launched in your web browser, and you
can start coding!

Moreover, requests for additional functionalities can be submitted via
`issue tracker `__.

Citation
--------
If you use any of HyRiver packages in your research, we appreciate citations:

.. code-block:: bibtex

@article{Chegini_2021,
author = {Chegini, Taher and Li, Hong-Yi and Leung, L. Ruby},
doi = {10.21105/joss.03175},
journal = {Journal of Open Source Software},
month = {10},
number = {66},
pages = {1--3},
title = {{HyRiver: Hydroclimate Data Retriever}},
volume = {6},
year = {2021}
}

Installation
------------

You can install PyGeoUtils using ``pip`` after installing ``libgdal`` on your system
(for example, in Ubuntu run ``sudo apt install libgdal-dev``).

.. code-block:: console

$ pip install pygeoutils

Alternatively, PyGeoUtils can be installed from the ``conda-forge`` repository
using `Conda `__:

.. code-block:: console

$ conda install -c conda-forge pygeoutils

Quick start
-----------

We start by smoothing a ``shapely.geometry.LineString`` using B-spline:

.. code-block:: python

import pygeoutils as pgu
from shapely import LineString

line = LineString(
[
(-97.06138, 32.837),
(-97.06133, 32.836),
(-97.06124, 32.834),
(-97.06127, 32.832),
]
)
line = pgu.geometry_reproject(line, 4326, 5070)
sp = pgu.smooth_linestring(line, 5070, 5)
line_sp = pgu.geometry_reproject(sp.line, 5070, 4326)

Next, we use
`PyGeoOGC `__ to access
`National Wetlands Inventory `__ from WMS, and
`FEMA National Flood Hazard `__
via WFS, then convert the output to ``xarray.Dataset`` and ``GeoDataFrame``, respectively.

.. code-block:: python

from pygeoogc import WFS, WMS, ServiceURL
from shapely.geometry import Polygon

geometry = Polygon(
[
[-118.72, 34.118],
[-118.31, 34.118],
[-118.31, 34.518],
[-118.72, 34.518],
[-118.72, 34.118],
]
)
crs = 4326

wms = WMS(
ServiceURL().wms.mrlc,
layers="NLCD_2011_Tree_Canopy_L48",
outformat="image/geotiff",
crs=crs,
)
r_dict = wms.getmap_bybox(
geometry.bounds,
1e3,
box_crs=crs,
)
canopy = pgu.gtiff2xarray(r_dict, geometry, crs)

mask = canopy > 60
canopy_gdf = pgu.xarray2geodf(canopy, "float32", mask)

url_wfs = "https://hazards.fema.gov/gis/nfhl/services/public/NFHL/MapServer/WFSServer"
wfs = WFS(
url_wfs,
layer="public_NFHL:Base_Flood_Elevations",
outformat="esrigeojson",
crs=4269,
)
r = wfs.getfeature_bybox(geometry.bounds, box_crs=crs)
flood = pgu.json2geodf(r.json(), 4269, crs)

Contributing
------------

Contributions are very welcomed. Please read
`CONTRIBUTING.rst `__
file for instructions.